Patents by Inventor John M. Power

John M. Power has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981254
    Abstract: A system prevents activation of strobe lights on a vehicle in response to events calculated to indicate a nuisance activation. Directional strobing may be activated based on input from vehicles systems.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: May 14, 2024
    Assignee: ESS-Help, Inc.
    Inventors: John Zachariah Cobb, Daniel Anthony Tucker, David M. Tucker, Stephen T. Powers, Austin Reece Tucker, Kenneth E. Wagner, Mike Incorvaia
  • Patent number: 11938862
    Abstract: A hazard beacon has an interface to a vehicle wiring harness configured to detect that vehicle emergency indicators have been deployed, a plurality of separately strobe capable light segments forming a hazard symbol, and a microcontroller controlling operation of the plurality of separately strobe capable light segments.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: March 26, 2024
    Assignee: ESS-Help, Inc.
    Inventors: John Zachariah Cobb, Daniel Anthony Tucker, David M. Tucker, Stephen T. Powers, Austin Reece Tucker, Kenneth E. Wagner, Mike Incorvaia
  • Patent number: 6821921
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula IA: wherein R and R′ independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl or organosilyl radical; R1, R2, and R3 independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl radical; M is a group IIIB, IVB, VB, VIB, VIIB or VIII transition metal; T independently represents a univalent anionic ligand such as a hydrogen atom, or a substituted or unsubstituted hydrocarbyl, halogeno, aryloxido, arylorganosilyl, alkylorganosilyl, amido, arylamido, phosphido, or arylphosphido group, or two T groups taken together represent an alkylidene or a cyclometallated hydrocarbyl bidentate ligand; L independently represents a sigma donor
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: November 23, 2004
    Assignee: Chevron Chemical Co.
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Publication number: 20040063574
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula IA: 1
    Type: Application
    Filed: December 16, 2002
    Publication date: April 1, 2004
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Patent number: 6544346
    Abstract: A method of repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method is particularly suited for completely removing a thermal insulating ceramic layer of thermal barrier coating system that includes a metallic bond coat, such as a diffusion aluminide or MCrAlY coating, between the surface of the component and the ceramic layer, while leaving the bond coat substantially undamaged. Furthermore, the method of this invention includes a technique by which ceramic material within cooling holes in the component can be removed without damaging the underlying bond coat. The process steps generally include removing the ceramic layer from the surface of the component by subjecting the ceramic layer to a caustic solution at an elevated temperature and pressure, and then removing ceramic material from the cooling hole by carefully directing a high-velocity fluid stream into the cooling hole.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: April 8, 2003
    Assignee: General Electric Company
    Inventors: Warren D. Grossklaus, Jr., Roger D. Wustman, John M. Powers, Jeffrey A. Conner, Jon C. Schaeffer
  • Patent number: 6511936
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula 1A: wherein R and R′ independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl or organosilyl radical; R1, R2, and R3 independently represent a hydrogen atom, or a substituted or unsubstituted, branched or unbranched hydrocarbyl radical; M is a group IIIB, IVB, VB, VIB, VIIB or VIII transition metal; T independently represents a univalent anionic ligand such as a hydrogen atom, or a substituted or unsubstituted hydrocarbyl halogeno, aryloxido, arylorganosilyl, alkyloriganosilyl, amido, arylamido, phosphido, or arylphosphido group, or two T groups taken together represent an alkylidene or a cyclometallated hydrocarbyl bidentate ligand; L independently represents a sigma donor
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: January 28, 2003
    Assignees: University of Delaware, Chevron Chemical Co.
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Patent number: 6248265
    Abstract: Fluoroaryl Grignard reagents are produced from a hydrocarbyl Grignard reagent and fluoroaromatic compounds via separate additions of different fluoroaromatic compounds, such that the conversion of hydrocarbyl Grignard reagent to the desired fluoroaryl Grignard reagent is essentially complete, and thus the reaction product is free or essentially free of agents that may negatively affect subsequent reactions. The fluoroaryl Grignard reagents may be further reacted with boron trihalides in order to obtain tris(fluoroaryl)boranes or tetrakis(fluoroaryl)borates.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: June 19, 2001
    Assignee: Albemarle Corporation
    Inventors: John Y. Lee, David W. Owens, Charles R. Everly, Ronny W. Lin, John M. Power, Steven P. Diefenbach, Niomi L. Krzystowczyk
  • Patent number: 6129863
    Abstract: Perfluoroaryl Grignard reagents are produced from a hydrocarbyl Grignard reagent and polyhaloaromatic compounds via separate additions of different polyhaloaromatic compounds, such that the conversion of hydrocarbyl Grignard reagent to the desired perfluoroaryl Grignard reagent is essentially complete, and thus the reaction product is free or essentially free of agents that may negatively affect subsequent reactions. The perfluoroaryl Grignard reagents may be further reacted with boron trihalides in order to obtain tris(perfluoroaryl)boranes or tetrakis(perfluoroaryl)borates.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: October 10, 2000
    Assignee: Albemarle Corporation
    Inventors: John Y. Lee, David W. Owens, Charles R. Everly, Ronny W. Lin, John M. Power, Steven P. Diefenbach, Niomi L. Krzystowczyk
  • Patent number: 6124568
    Abstract: A heating apparatus and method for welding a superalloy article. The apparatus and method of this invention provide for pre-weld and post-weld heat treatments to be performed on an article within the same enclosure in which the welding operation is performed. The apparatus accurately controls the temperature of the component to be welded throughout the temperature treatment profiles with the use of means for welding the article, means for heating the article, and means for sensing the article temperature. The apparatus also works in conjunction with a memory storage device that stores appropriate pre-weld and post-weld heat treatment temperature profiles and a welding temperature profile for the article.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: September 26, 2000
    Assignee: General Electric Company
    Inventors: Thomas F. Broderick, Richard R. Worthing, Jr., Lawrence J. Roedl, John M. Powers, Warren D. Grossklaus, Jr.
  • Patent number: 6054687
    Abstract: A heating apparatus and method for welding a superalloy article. In a preferred embodiment, the apparatus and method entail welding a superalloy article within an enclosure equipped with a thermal radiation-generating device that preheats the article to a temperature of at least 1500.degree. F. prior to welding. The invention more particularly provides a thermally-reflective coating on a reflector member positioned adjacent the thermal radiation-generating device for the purpose of reflecting thermal radiation emitted by the device into the enclosure. The device is then operated to heat the superalloy article to a suitable temperature, e.g., 1500.degree. F. or more, after which a welding operation is performed on the superalloy article.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: April 25, 2000
    Assignee: General Electric Company
    Inventors: Jeffrey A. Conner, William R. Stowell, John F. Ackerman, John M. Powers, Thomas F. Broderick
  • Patent number: 6020571
    Abstract: An apparatus and method for welding a superalloy article. The apparatus generally entails an enclosure adapted for containing a superalloy article, a polarity-reversing plasma transferred arc welder apparatus for welding a localized region of the article, an induction coil for heating the localized region, and elements for sensing and controlling the temperature of the localized region. The induction coil is placed in close proximity to the localized region of the article so that the temperature of the localized region is largely determined and quickly altered by the output of the coil. The polarity-reversing plasma transferred arc welding apparatus is operated at very low currents of not more than forty-five amps, so that the welding apparatus has only a secondary heating affect compared to the induction coil.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: February 1, 2000
    Assignee: General Electric Company
    Inventors: Warren D. Grossklaus, Jr., Richard R. Worthing, Jr., Lawrence J. Roedl, John M. Powers, Thomas F. Broderick
  • Patent number: 5965048
    Abstract: An atmosphere controlled workpiece heating chamber includes a spaced apart multiple gas flow means combination which avoids contamination of the atmosphere within the chamber from ambient atmosphere such as air. In one form, the chamber includes a gas diffuser as one flow means, and a heating means, both of which are readily removable, and easily and accurately replaceable.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: October 12, 1999
    Assignee: General Electric Company
    Inventor: John M. Powers
  • Patent number: 5959151
    Abstract: One aspect of the invention is a process for purifying a pentafluorophenyl boron compound from a crude mixture comprised of the pentafluorophenyl boron compound and impurities, the impurities at least comprised of an ether and water, the process comprising: (a) mixing the crude mixture with an azeotropic organic solvent which (i) is capable of azeotrope formation with the water and (ii) has a boiling point above the boiling point of the ether; (b) distilling the resulting solution to remove at least a portion of the impurities; and (c) cooling the distilled solution so that a precipitate comprised of the pentafluorophenyl boron compound is formed. Processes are also described for producing pentafluorophenyl boron compounds which are particularly pure, dry and fine.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: September 28, 1999
    Assignee: Albemarle Corporation
    Inventors: John Y. Lee, Steven P. Diefenbach, John M. Power, Ronny W. Lin
  • Patent number: 5936108
    Abstract: A metallocene having one or two hydrocarbyl groups bonded to a Group 4 metal are produced from a crude impure pasty or non-wet mixture containing at least 50% by weight of a metallocene having two halogen atoms bonded to a Group 4 metal atom, by (a) mixing liquid aromatic hydrocarbon with the crude impure pasty or non-wet mixture; (b) mixing a solution of an organolithium compound in a suitable anhydrous ether or paraffinic hydrocarbon solvent or a mixture thereof, with the mixture from (a) and agitating the resulting mixture so that lithium halide solids are formed; and (c) separating the solids and recovering the resultant liquid portion which is mainly a solution of the metallocene having one or two hydrocarbyl groups bonded to a Group 4 metal. Additional optional steps include (d) replacing the original solvent from the solution from (c) with a liquid paraffinic hydrocarbon diluent to form a slurry of product solids; and (e) recovering the product metallocene solids.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: August 10, 1999
    Assignee: Albemarle Corporation
    Inventors: Ronny W. Lin, Bruce C. Berris, John M. Power, Troy E. DeSoto, John F. Balhoff, Jamie R. Strickler
  • Patent number: 5883278
    Abstract: Chiral metallocenes are prepared by reacting a salt of an asymmetric bis(cyclopentadienyl) moiety containing ligand with a chelate diamine adduct of a transition, lanthanide, or actinide metal halide in an organic solvent medium so as to produce said chiral metallocene.
    Type: Grant
    Filed: January 20, 1997
    Date of Patent: March 16, 1999
    Assignee: Albemarle Corporation
    Inventors: Jamie R. Strickler, John M. Power, Ronny W. Lin, Troy E. DeSoto, John F. Balhoff
  • Patent number: 5883296
    Abstract: A mixture is made from (i) a tris(dihydrocarbylamino) phosphoroamidite and/or a hydrohalide thereof, (ii) a strong base (e.g., NaOH) in proportions of about 2.0 to about 4.0 moles of (ii) per mole of (i), and (iii) at least one solvent for the base (e.g., H.sub.2 O). To this mixture is added a hydrocarbyl monohalide (e.g., EtBr) in proportions of about 1.0 to about 3.0 moles per mole of phosphoroamidite used in forming the initial mixture, and the resultant reaction produces tetrakis(dihydrocarbylamino)phosphonium halide. The process enables more efficient production of tetrakis(dihydrocarbylamino)phosphonium halides, and is capable of being effectively used in large scale production facilities while satisfying the economic constraints of commercial operations.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: March 16, 1999
    Assignee: Albermale Corporation
    Inventors: John M. Power, Bruce C. Berris, David A. Caillet
  • Patent number: 5847175
    Abstract: Chiral metallocenes are prepared by reacting a salt of an asymmetric bis(cyclopentadienyl)-moiety-containing ligand with a chelate diamine adduct of a transition, lanthanide, or actinide metal halide in an organic solvent or diluent so as to produce said chiral metallocene.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: December 8, 1998
    Assignee: Albemarle Corporation
    Inventors: Jamie R. Strickler, John M. Power
  • Patent number: 5679814
    Abstract: Metallocenes, such as silicon bridged ansa-metallocenes, are purified by heating a slurry of the metallocene at elevated temperature in an aprotic, polar solvent so as to extract impurities from the metallocene into the solvent and then separating the impurity containing solvent from the metallocene.
    Type: Grant
    Filed: December 11, 1995
    Date of Patent: October 21, 1997
    Assignee: Albemarle Corporation
    Inventors: Jamie R. Strickler, John M. Power
  • Patent number: 5556997
    Abstract: Chiral metallocenes are prepared by reacting a salt of an asymmetric bis(cyclopentadienyl) moiety containing ligand with a chelate diamine adduct of a transition, lanthanide, or actinide metal halide in an organic solvent medium so as to produce said chiral metallocene.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: September 17, 1996
    Assignee: Albemarle Corporation
    Inventors: Jamie R. Strickler, John M. Power
  • Patent number: 5455333
    Abstract: Metallocenes which are useful as olefin polymerization catalysts are prepared by reacting a compound of a metal of the group 4 to 10, lanthanide or actinide series of the Periodic Table of the Elements with a magnesium halide salt of a cyclopentadienyl containing ligand in the presence of an organic halide so as to form the metallocene while simultaneously raising the oxidation state of the metal.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: October 3, 1995
    Assignee: Albemarle Corporation
    Inventors: Jamie R. Strickler, John M. Power