Patents by Inventor John P. Dubuque

John P. Dubuque has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8768679
    Abstract: A computer-implemented method that simulates NPskew effects on a combination NFET (Negative Field Effect Transistor)/PFET (Positive Field Effect Transistor) semiconductor device using slew perturbations includes performing a timing test by a computing device, by: (1) evaluating perturb slews in Strong N/Weak P directions on the combination semiconductor device for a timing test result; (2) evaluation perturb slews in Weak N/Strong P directions on the combination semiconductor device for a timing test result; and (3) evaluating unperturbed slews in a balanced condition on the combination semiconductor device for a timing test result. After each test is performed, a determination is made as to which evaluation of the perturbed and unperturbed slews produces a most conservative timing test result for the combination semiconductor device. An NPskew effect adjusted timing test result is finally output based on determining the most conservative timing test result.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue X. Wang
  • Publication number: 20140173543
    Abstract: Systems and methods are provided for extracting parasitics in a design of an integrated circuit with multi-patterning requirements. The method includes determining resistance solutions and capacitance solutions. The method further includes performing parasitic extraction of the resistance solutions and the capacitance solutions to generate mean values for the resistance solutions and the capacitance solutions. The method further includes capturing a multi-patterning source of variation for each of the resistance solutions and the capacitance solutions during the parasitic extraction. The method further includes determining a sensitivity for each captured source of variation to a respective vector of parameters. The method further includes determining statistical parasitics by multiplying each of the resistance solutions and the capacitance solutions by the determined sensitivity for each respective captured source of variation.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan BUCK, Brian DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Peter A. HABITZ, David J. HATHAWAY, Jeffrey G. HEMMETT, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Publication number: 20140123089
    Abstract: Systems and methods for modeling multi-patterning variability with statistical timing analysis during IC fabrication are described. The method may be provided implemented in a computer infrastructure having computer executable code tangibly embodied on a computer readable storage medium having programming instructions operable to define at least one source of variation in an integrated circuit design. The programming instructions further operable to model the at least one source of variation for at least two patterns in at least one level of the integrated circuit design as at least two sources of variability respectively.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan BUCK, Brian DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Peter A. HABITZ, David J. HATHAWAY, Jeffrey G. HEMMETT, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Publication number: 20140123095
    Abstract: Systems and methods for modeling multi-patterning variability with statistical timing analysis during IC fabrication are described. The method may be provided implemented in a computer infrastructure having computer executable code tangibly embodied on a computer readable storage medium having programming instructions operable to define at least one source of variation in an integrated circuit design. The programming instructions further operable to model the at least one source of variation for at least two patterns in at least one level of the integrated circuit design as at least two sources of variability respectively.
    Type: Application
    Filed: December 23, 2013
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan BUCK, Brian DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Peter A. HABITZ, David J. HATHAWAY, Jeffrey G. HEMMETT, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Publication number: 20140123086
    Abstract: Systems and methods are provided for extracting parasitics in a design of an integrated circuit with multi-patterning requirements. The method includes determining resistance solutions and capacitance solutions. The method further includes performing parasitic extraction of the resistance solutions and the capacitance solutions to generate mean values for the resistance solutions and the capacitance solutions. The method further includes capturing a multi-patterning source of variation for each of the resistance solutions and the capacitance solutions during the parasitic extraction. The method further includes determining a sensitivity for each captured source of variation to a respective vector of parameters. The method further includes determining statistical parasitics by multiplying each of the resistance solutions and the capacitance solutions by the determined sensitivity for each respective captured source of variation.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan BUCK, Brian DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, Peter A. HABITZ, David J. HATHAWAY, Jeffrey G. HEMMETT, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Vladimir ZOLOTOV
  • Patent number: 8656207
    Abstract: A method performs statistical static timing analysis of a network that includes a phase-locked loop and a feedback path. The feedback path comprises a set of delays operatively connected from the output of the phase-locked loop back to the input of the phase-locked loop. One embodiment herein computes a statistical feedback path delay for the feedback path. The method can use a separate statistical parameter to represent random uncorrelated delay variation for each delay in the feedback path. The method also computes an output arrival time for the phase-locked loop based on the negative of the statistical feedback path delay.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz
  • Patent number: 8560989
    Abstract: Systems and methods for statistical clock cycle computation and closing timing of an integrated circuit design to a maximum clock cycle or period. The method includes loading a design and timing model for at least one circuit path of an integrated circuit or a region of the integrated circuit into a computing device. The method further includes performing a statistical static timing analysis (SSTA) of the at least one circuit path using the loaded design and timing model to obtain slack canonical data. The method further includes calculating a maximum circuit clock cycle for the integrated circuit or the specified region of the integrated circuit in linear canonical form based upon the slack canonical data obtained from the SSTA.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Nathan Buck, Brian Dreibelbis, John P. Dubuque, Eric A. Foreman, James C. Gregerson, Peter A. Habitz, Jeffrey G. Hemmett, Debjit Sinha, Natesan Venkateswaran, Chandramouli Visweswariah, Michael H. Wood, Vladimir Zolotov
  • Patent number: 8468483
    Abstract: In embodiments of a statistical static timing analysis (SSTA) method, system and program storage device, the interdependence between the setup time and hold time margins of a circuit block (e.g., a latch, flip-flop, etc., which requires the checking of setup and hold timing constraints) is determined, taking into account possible variations in multiple parameters (e.g., using a variation-aware characterizing technique). A parameterized statistical static timing analysis (SSTA) of a circuit incorporating the circuit block is performed in order to determine, in statistical parameterized form, setup and hold times for the circuit block. Based on the interdependence between the setup and hold time margins, setup and hold time constraints can be determined in statistical parameterized form. Finally, the setup and hold times determined during the SSTA can be checked against the setup and hold time constraints to determine, if the time constraints are violated or not and to what degree.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladimir Zolotov
  • Publication number: 20130145333
    Abstract: Systems and methods for statistical clock cycle computation and closing timing of an integrated circuit design to a maximum clock cycle or period. The method includes loading a design and timing model for at least one circuit path of an integrated circuit or a region of the integrated circuit into a computing device. The method further includes performing a statistical static timing analysis (SSTA) of the at least one circuit path using the loaded design and timing model to obtain slack canonical data. The method further includes calculating a maximum circuit clock cycle for the integrated circuit or the specified region of the integrated circuit in linear canonical form based upon the slack canonical data obtained from the SSTA.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan BUCK, Brian DREIBELBIS, John P. DUBUQUE, Eric A. FOREMAN, James C. GREGERSON, Peter A. HABITZ, Jeffrey G. HEMMETT, Debjit SINHA, Natesan VENKATESWARAN, Chandramouli VISWESWARIAH, Michael H. WOOD, Vladimir ZOLOTOV
  • Publication number: 20130104092
    Abstract: In embodiments of a statistical static timing analysis (SSTA) method, system and program storage device, the interdependence between the setup time and hold time margins of a circuit block (e.g., a latch, flip-flop, etc., which requires the checking of setup and hold timing constraints) is determined, taking into account possible variations in multiple parameters (e.g., using a variation-aware characterizing technique). A parameterized statistical static timing analysis (SSTA) of a circuit incorporating the circuit block is performed in order to determine, in statistical parameterized form, setup and hold times for the circuit block. Based on the interdependence between the setup and hold time margins, setup and hold time constraints can be determined in statistical parameterized form. Finally, the setup and hold times determined during the SSTA can be checked against the setup and hold time constraints to determine, if the time constraints are violated or not and to what degree.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Applicant: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladimir Zolotov
  • Patent number: 8413095
    Abstract: A statistical single library that includes on-chip variation (OCV) is created for timing and power analysis of a digital chip design. Initially, library values for all cells of a digital chip design, including ranges for environmental and process parameters, are subject to a statistical model to create statistical timing for the ranges of the parameters. A statistical timing tool is applied across the ranges of the parameters to determine statistical corners for delay and input power to a subset of cells. The statistically determined delay and input power to the subset of cells is entered into the statistical single library. Each delay of each statistical corner for the subset of cells is compared with a chip sign-off statistical delay requirement of a test macro.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Amol A. Joshi, Christopher J. Kiegle, William J. Wright, Vladimir Zolotov
  • Publication number: 20130018617
    Abstract: Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang, Vladmimir Zolotov
  • Publication number: 20120084066
    Abstract: A computer-implemented method that simulates NPskew effects on a combination NFET (Negative Field Effect Transistor)/PFET (Positive Field Effect Transistor) semiconductor device using slew perturbations includes performing a timing test by a computing device, by: (1) evaluating perturb slews in Strong N/Weak P directions on the combination semiconductor device for a timing test result; (2) evaluation perturb slews in Weak N/Strong P directions on the combination semiconductor device for a timing test result; and (3) evaluating unperturbed slews in a balanced condition on the combination semiconductor device for a timing test result. After each test is performed, a determination is made as to which evaluation of the perturbed and unperturbed slews produces a most conservative timing test result for the combination semiconductor device. An NPskew effect adjusted timing test result is finally output based on determining the most conservative timing test result.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue X. Wang
  • Patent number: 8141012
    Abstract: An approach for covering multiple selective timing corners in a single statistical timing run is described. In one embodiment, a single statistical timing analysis is run on the full parameter space that covers unlimited process parameters/environment conditions. Results from the statistical timing analysis are projected for selected corners. Timing closure is performed on the corners having the worst slacks.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Susan K. Lichtensteiger, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang
  • Patent number: 8056035
    Abstract: A method of performing statistical timing analysis of a logic design, including effects of signal coupling, includes performing a deterministic analysis to determine deterministic coupling information for at least one aggressor/victim net pair of the logic design. Additionally, the method includes performing a statistical timing analysis in which the deterministic coupling information for the at least one aggressor/victim net pair is combined with statistical values of the statistical timing analysis to determine a statistical effective capacitance of a victim of the aggressor/victim net pair. Furthermore, the method includes using the statistical effective capacitance to determine timing data used in the statistical timing analysis.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, David J. Hathaway, Gregory M. Schaeffer, Chandramouli Visweswariah
  • Publication number: 20110140745
    Abstract: A method performs statistical static timing analysis of a network that includes a phase-locked loop and a feedback path. The feedback path comprises a set of delays operatively connected from the output of the phase-locked loop back to the input of the phase-locked loop. One embodiment herein computes a statistical feedback path delay for the feedback path. The method can use a separate statistical parameter to represent random uncorrelated delay variation for each delay in the feedback path. The method also computes an output arrival time for the phase-locked loop based on the negative of the statistical feedback path delay.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Applicant: International Business Machines Corporatino
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz
  • Publication number: 20110055793
    Abstract: An approach for covering multiple selective timing corners in a single statistical timing run is described. In one embodiment, a single statistical timing analysis is run on the full parameter space that covers unlimited process parameters/environment conditions. Results from the statistical timing analysis are projected for selected corners. Timing closure is performed on the corners having the worst slacks.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathan C. Buck, Brian M. Dreibelbis, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Jeffrey G. Hemmett, Susan K. Lichtensteiger, Natesan Venkateswaran, Chandramouli Visweswariah, Xiaoyue Wang
  • Patent number: 7886246
    Abstract: Methods for identifying failing timing requirements in a digital design. The method includes identifying at least one timing test in the digital design that has a passing slack in a base process corner and a failing slack in a different process corner. The method further includes computing a sensitivity of the failing slack to each of a plurality of variables and comparing each sensitivity to a respective sensitivity threshold. If the sensitivity of at least one of the variables is greater than the respective sensitivity threshold, then the at least one timing test is considered to fail.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Chandramouli Visweswariah
  • Patent number: 7844932
    Abstract: A method of evaluating an integrated circuit design selects manufacturing parameters of interest which are outside of manufacturing specification limits. Then, the method runs timing tests on the integrated circuit design and successively evaluates the timing test results in an iterative process that considers the timing performance sensitivity to the selected manufacturing parameters of interest. The design is made more robust to each parameter out of manufacturing range.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Chandramouli Visweswariah
  • Patent number: 7797657
    Abstract: A method and system for decreasing processing time in multi-corner static timing analysis. In one embodiment, parameters are ordered in a parameter order by decreasing magnitude of impact on variability of timing. In one example, a decreasing parameter order is utilized to order slack cutoff values that are assigned across a parameter process space. In another example, a decreasing parameter order is utilized to perform a multi-corner timing analysis on one or more dependent parameters in an independent fashion.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Nathan C. Buck, John P. Dubuque, Eric A. Foreman, Peter A. Habitz, Kerim Kalafala, Peihua Qi, Chandramouli Visweswariah, Xiaoyue Wang