Patents by Inventor John P. Holland

John P. Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260768
    Abstract: Methods, systems, apparatuses, and computer programs are presented for controlling plasma discharge uniformity using magnetic fields. A substrate processing apparatus includes a vacuum chamber with a processing zone for processing a substrate. The apparatus further includes a magnetic field sensor to detect a first signal representing an axial magnetic field and a second signal representing a radial magnetic field associated with the vacuum chamber. The apparatus includes at least two magnetic field sources to generate an axial supplemental magnetic field and a radial supplemental magnetic field through the processing zone of the vacuum chamber. The apparatus includes a magnetic field controller coupled to the magnetic field sensor and the at least two magnetic field sources. The magnetic field controller adjusts at least one characteristic of one or more of the axial supplemental magnetic field and the radial supplemental magnetic field based on the first signal and the second signal.
    Type: Application
    Filed: August 30, 2021
    Publication date: August 17, 2023
    Inventors: Theodoros Panagopoulos, Alexei M. Marakhtanov, Bing Ji, Anthony de la Llera, John P. Holland, Dong Woo Paeng
  • Publication number: 20230253184
    Abstract: An impedance match housing is described. The impedance match housing includes an impedance matching circuit having an input that is coupled to a radio frequency (RF) generator. The impedance matching circuit has an output that is coupled to a first RF strap. The impedance match housing includes a uniformity control circuit coupled in parallel to a portion of the first RF strap to modify uniformity in a processing rate of a substrate when the substrate is processed within a plasma chamber.
    Type: Application
    Filed: November 2, 2021
    Publication date: August 10, 2023
    Inventors: Alexei M. Marakhtanov, Felix Leib Kozakevich, Bing Ji, John P. Holland
  • Publication number: 20230215694
    Abstract: A method for achieving a first uniformity level in a processing rate across a surface of a substrate is described. The method includes receiving the first uniformity level to be achieved across the surface of the substrate and identifying a first plurality of duty cycles associated with a first plurality of states based on the first uniformity level. The first plurality of states are of a variable of a first radio frequency (RF) signal. The method further includes controlling an RF generator to generate the first RF signal having the first plurality of duty cycles.
    Type: Application
    Filed: December 23, 2021
    Publication date: July 6, 2023
    Inventors: Alexei M. Marakhtanov, Felix Leib Kozakevich, Bing Ji, John P. Holland, Ranadeep Bhowmick
  • Publication number: 20230071249
    Abstract: Methods, systems, apparatuses, and computer programs are presented for controlling etch rate and plasma uniformity using magnetic fields. A semiconductor substrate processing apparatus includes a vacuum chamber including a processing zone for processing a substrate using capacitively coupled plasma (CCP). The apparatus further includes a magnetic field sensor configured to detect a signal representing a residual magnetic field associated with the vacuum chamber. At least one magnetic field source is configured to generate one or more supplemental magnetic fields through the processing zone of the vacuum chamber. A magnetic field controller is coupled to the magnetic field sensor and the at least one magnetic field source. The magnetic field controller is configured to adjust at least one characteristic of the one or more supplemental magnetic fields, causing the one or more supplemental magnetic fields to reduce the residual magnetic field to a pre-determined value.
    Type: Application
    Filed: January 29, 2021
    Publication date: March 9, 2023
    Inventors: Scott Briggs, Pratik Mankidy, John P. Holland, Andrew D. Bailey, III
  • Publication number: 20140345803
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Valentin N. TODOROW, John P. HOLLAND, Michael D. WILLWERTH
  • Patent number: 8801896
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: August 12, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Valentin N. Todorow, John P. Holland, Michael D. Willwerth
  • Patent number: 8475625
    Abstract: Embodiments of the invention provide a method and apparatus, such as a processing chamber, suitable for etching high aspect ratio features. Other embodiments include a showerhead assembly for use in the processing chamber. In one embodiment, a processing chamber includes a chamber body having a showerhead assembly and substrate support disposed therein. The showerhead assembly includes at least two fluidly isolated plenums, a region transmissive to an optical metrology signal, and a plurality of gas passages formed through the showerhead assembly fluidly coupling the plenums to the interior volume of the chamber body.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: July 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Sharma Pamarthy, Huutri Dao, Xiaoping Zhou, Kelly A. McDonough, Jivko Dinev, Farid Abooameri, David E. Gutierrez, Jim Zhongyi He, Robert S. Clark, Dennis M. Koosau, Jeffrey William Dietz, Declan Scanlan, Subhash Deshmukh, John P. Holland, Alexander Paterson
  • Publication number: 20130118687
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Application
    Filed: January 4, 2013
    Publication date: May 16, 2013
    Inventors: VALENTIN N. TODOROW, John P. Holland, Michael D. Willwerth
  • Patent number: 8349128
    Abstract: A method and apparatus for etching a substrate using a spatially modified plasma is provided herein. In one embodiment, the method includes providing a process chamber having a plasma stabilizer disposed above a substrate support pedestal. A substrate is placed upon the pedestal. A process gas is introduced into the process chamber and a plasma is formed from the process gas. The substrate is etched with a plasma having an ion density to radical density ratio defined by the plasma stabilizer.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: January 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Valentin N. Todorow, John P. Holland, Michael D. Willwerth
  • Patent number: 7837838
    Abstract: The present invention generally provides methods and apparatuses that are adapted to form a high quality dielectric gate layer on a substrate. Embodiments contemplate a method wherein a metal plasma treatment process is used in lieu of a standard nitridization process to form a high dielectric constant layer on a substrate. Embodiments further contemplate an apparatus adapted to “implant” metal ions of relatively low energy in order to reduce ion bombardment damage to the gate dielectric layer, such as a silicon dioxide layer and to avoid incorporation of the metal atoms into the underlying silicon. In general, the process includes the steps of forming a high-k dielectric and then terminating the surface of the deposited high-k material to form a good interface between the gate electrode and the high-k dielectric material.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Alex M. Paterson, Steven Hung, Patricia M. Liu, Tatsuya Sato, Valentin Todorow, John P. Holland
  • Patent number: 7780864
    Abstract: A method of processing a workpiece in the chamber of a plasma reactor in which the plasma ion density radial distribution in the process region is controlled by adjusting the ratio between the amounts of the (VHF) capacitively coupled power and the inductively coupled power while continuing to maintain the level of total plasma source power. The method can also include applying independently adjustable LF bias power and HF bias power to the workpiece and adjusting the average value and population distribution of ion energy at the surface of the workpiece by adjusting the proportion between the LF and HF bias powers.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorow, Theodoros Panagopoulos, Brian K. Hatcher, Dan Katz, Edward P. Hammond, IV, John P. Holland, Alexander Matyushkin
  • Patent number: 7777152
    Abstract: An RF blocking filter isolates a two-phase AC power supply from at least 2 kV p-p of power of an HF frequency that is reactively coupled to a resistive heating element, while conducting several kW of 60 Hz AC power from the two-phase AC power supply to the resistive heating element without overheating, the two-phase AC power supply having a pair of terminals and the resistive heating element having a pair of terminals. The filter includes a pair of cylindrical non-conductive envelopes each having an interior diameter between about one and two inches and respective pluralities of fused iron powder toroids of magnetic permeability on the order of about 10 stacked coaxially within respective ones of the pair of cylindrical envelopes, the exterior diameter of the toroids being about the same as the interior diameter of each of the envelopes. A pair of wire conductors of diameter between 3 mm and 3.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Valentin N. Todorov, Michael D. Willwerth, Alexander Paterson, Brian K. Hatcher, James E. Sammons, III, John P. Holland
  • Patent number: 7727413
    Abstract: A method of processing a workpiece in the chamber of a plasma reactor includes introducing a process gas into the chamber, simultaneously (a) capacitively coupling VHF plasma source power into a process region of the chamber that overlies the wafer, and (b) inductively coupling RF plasma source power into the process region, and controlling plasma ion density by controlling the effective frequency of the VHF source power. In a preferred embodiment, the step of coupling VHF source power is performed by coupling VHF source power from different generators having different VHF frequencies, and the step of controlling the effective frequency is performed by controlling the ratio of power coupled by the different generators.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: June 1, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorow, Theodoros Panagopoulos, Brian K. Hatcher, Dan Katz, Edward P. Hammond, IV, John P. Holland, Alexander Matyushkin
  • Patent number: 7695633
    Abstract: A method of processing a workpiece in a plasma reactor includes coupling RF power from at least three RF power source of three respective frequencies to plasma in the reactor, setting ion energy distribution shape by selecting a ratio between the power levels of a first pair of the at least three RF power sources, and setting ion dissociation and ion density by selecting a ratio between the power levels of a second pair of the at least three RF power sources. The three respective frequencies can be an LF frequency, an HF frequency and a VHF frequency, wherein the first pair corresponds to the LF and HF frequencies and the second pair corresponds to the HF and VHF frequencies. Alternatively, the power sources comprise four RF power sources, and wherein the first pair corresponds to an HF frequency and an LF frequency and the second pair corresponds to a VHF frequency and another frequency. In one embodiment, the second pair corresponds to an upper VHF frequency and a lower VHF frequency.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventor: John P. Holland
  • Patent number: 7678710
    Abstract: The present invention generally provides methods and apparatuses that are adapted to form a high quality dielectric gate layer on a substrate. Embodiments contemplate a method wherein a metal plasma treatment process is used in lieu of a standard nitridization process to form a high dielectric constant layer on a substrate. Embodiments further contemplate an apparatus adapted to “implant” metal ions of relatively low energy in order to reduce ion bombardment damage to the gate dielectric layer, such as a silicon dioxide layer and to avoid incorporation of the metal atoms into the underlying silicon. In general, the process includes the steps of forming a high-k dielectric and then terminating the surface of the deposited high-k material to form a good interface between the gate electrode and the high-k dielectric material.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Steven Hung, Patricia M. Liu, Tatsuya Sato, Alex M. Paterson, Valentin Todorov, John P. Holland
  • Patent number: 7674394
    Abstract: A method of processing a workpiece in the chamber of a plasma reactor includes capacitively coupling plasma source power using a ceiling gas distribution plate as the electrode while inductively coupling plasma source power through the ceiling gas distribution plate, and flowing process gas through the gas distribution plate from a gas input to plural gas injection orifices, distributing the gas flow within the gas distribution plate through a succession of arcuate paths joined at respective junctions, dividing gas flow at each junction from a first respective one of said gas flow paths into a respective pair of said gas flow paths in opposite gas flow directions, and restricting the arcuate length of each of the arcuate paths to less than half-circles.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorov, Theodoros Panagopoulos, Brian K. Hatcher, Dan Katz, Edward P. Hammond, IV, John P. Holland
  • Patent number: 7648914
    Abstract: Embodiments of the invention generally provide methods for etching a substrate. In one embodiment, the method includes determining a substrate temperature target profile that corresponds to a uniform deposition rate of etch by-products on a substrate, preferentially regulating a temperature of a first portion of a substrate support relative to a second portion of the substrate support to obtain the substrate temperature target profile on the substrate, and etching the substrate on the preferentially regulated substrate support. In another embodiment, the method includes providing a substrate in a processing chamber having a selectable distribution of species within the processing chamber and a substrate support with lateral temperature control, wherein a temperature profile induced by the substrate support and a selection of species distribution comprise a control parameter set, etching a first layer of material and etching a second layer of material respectively using different control parameter sets.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: January 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Thomas J. Kropewnicki, Theodoros Panagopoulos, Nicolas Gani, Wilfred Pau, Meihua Shen, John P. Holland
  • Patent number: 7645710
    Abstract: The present invention generally provides methods and apparatuses that are adapted to form a high quality dielectric gate layer on a substrate. Embodiments contemplate a method wherein a metal plasma treatment process is used in lieu of a standard nitridization process to form a high dielectric constant layer on a substrate. Embodiments further contemplate an apparatus adapted to “implant” metal ions of relatively low energy in order to reduce ion bombardment damage to the gate dielectric layer, such as a silicon dioxide layer and to avoid incorporation of the metal atoms into the underlying silicon. In general, the process includes the steps of forming a high-k dielectric and then terminating the surface of the deposited high-k material to form a good interface between the gate electrode and the high-k dielectric material.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Sean Olsen, Thai Cheng Chua, Steven Hung, Patricia M. Liu, Tatsuya Sato, Alex M. Paterson, Valentin Todorow, John P. Holland
  • Patent number: 7645357
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber and a workpiece support within the chamber, the chamber having a ceiling facing the workpiece support, a capacitively coupled plasma source power applicator comprising a source power electrode at one of: (a) the ceiling (b) the workpiece support, and plural VHF power generators of different fixed frequencies coupled to the capacitively coupled source power applicator, and a controller for independently controlling the power output levels of the plural VHF generators so as to control an effective VHF frequency applied to the source power electrode. In a preferred embodiment, the reactor further includes a plasma bias power applicator that includes a bias power electrode in the workpiece support and one or more RF bias power generators of different frequencies coupled to the plasma bias power applicator.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: January 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Paterson, Valentin N. Todorow, Theodoros Panagopoulos, Brian K. Hatcher, Dan Katz, Edward P. Hammond, IV, John P. Holland, Alexander Matyushkin
  • Publication number: 20090236447
    Abstract: Methods and apparatus for processing substrates are provided herein. In some embodiments, a gas distribution apparatus may include a plurality of gas inlets configured to deliver a process gas to a process chamber; and a plurality of flow controllers having outlets coupled to the plurality of gas inlets for independently controlling the flow rate through each of the plurality of gas inlets. The gas distribution apparatus may be coupled to a process chamber for controlling the delivery of one or more process gases thereto.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: THEODOROS PANAGOPOULOS, ALEXANDER PATERSON, JOHN P. HOLLAND, DAN KATZ, EDWARD P. HAMMOND, IV