Patents by Inventor John Petruzzello

John Petruzzello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8787116
    Abstract: A capacitive ultrasound transducer capable of operation in collapsed mode either with a reduced bias voltage, or with no bias voltage, is provided. The transducer includes a substrate that is contoured so that a middle region of the flexible membrane is collapsed against the substrate in the absence of a bias voltage. A non-collapsible gap may exists between the substrate and peripheral regions of the flexible membrane. The contour of the substrate may be such as to strain the flexible membrane past the point of collapse, or to mechanically interfere with the flexible membrane. The substrate may include a further membrane disposed beneath the flexible membrane, the further membrane being contoured so that the flexible membrane is collapsed against it. The substrate may a support disposed beneath the further membrane to deflect a corresponding portion of the further membrane upward toward the flexible membrane. The support may be a post.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: July 22, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: John Petruzzello, John Douglas Fraser, Shiwei Zhou, Benoit Dufort, Theodore James Letavic
  • Publication number: 20140180114
    Abstract: This invention provides a method and a device for detecting occlusion and/or reopening of an artery of a body caused by a changing pressure applied on the artery as well as a system for measuring the systolic blood pressure of an artery of a body. The method comprises the steps of: obtaining a blood flow signal indicative of a change of the blood flow in the artery caused by the changing pressure, using a Doppler Ultrasound transducer attached to the exterior of the body; deriving, from the blood flow signal, at least one variable of a first variable indicative of the magnitude of the blood flow and a second variable indicative of the periodicity of the blood flow; and detecting the occlusion and/or reopening of the artery on the basis of the at least one variable. In this way, the occlusion/reopening of the artery can be detected automatically.
    Type: Application
    Filed: July 17, 2012
    Publication date: June 26, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Yinan Chen, Weijia Lu, Jianyi Zhong, Ajay Anand, John Petruzzello
  • Publication number: 20130274607
    Abstract: An automatic, stand-alone, hand-held ultrasound blood-vessel examination device (100) requires a reduced number of transducer elements (126) and presents a simplified user interface (136-140), without the need for displaying an image of any of the vessels. The probe, in one embodiment, acquires and examines a volume of interest (106), searches for a target vessel, tests the vessel for normality of blood flow, and reports the diagnosis, all automatically and without need for user intervention. In another embodiment, the probe finds a body vessel (108-112) in a volume, and extracts a clinical Doppler parameter, all automatically and without need for user intervention.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 17, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ajay Anand, John Petruzzello, Rajendra Singh Sisodia, Lalit Gupta, Pallavi Vajinepalli, Celine Firtion
  • Publication number: 20130096597
    Abstract: Energy is transferred (336) to cause a mechanical property of biological tissue to change, as in ablation. An effect of the transferring is examined in more than one spatial dimension to, for example, make an ablation halting decision for a treatment region, i.e., line (312) or layer (314), or for a location (316) within the region. Halting decisions can be based on lesion-central and/or lesion-peripheral longitudinal displacement of treated tissue evaluated in real time against a characteristic curve. Steering in the azimuthal and/or elevation direction is afforded by, for example, linear, or 2D, multi-channel ultrasound arrays for therapy and imaging. Protocols includable are region-wide scanning (SI 010) and location-by-location completion for both (HIFU) therapy and tracking (acoustic-radiation-forced-based) displacement of treated tissue.
    Type: Application
    Filed: April 27, 2011
    Publication date: April 18, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ajay Anand, John Petruzzello, Shiwei Zhou, Shriram Sethuraman
  • Patent number: 8353834
    Abstract: An ultrasonic diagnostic and therapy system is described for stopping the bleeding of severely damaged blood vessels or vessels severed in a limb amputation. A cuff is attached to the stump of the severed limb which contains a diagnostic transducer array and a HIFU transducer. The diagnostic transducer surveys the tissue of the severed limb, searching for a Doppler flow signal. When a Doppler flow signal is detected, the range to and coordinates of the sample volume where the flow was detected are determined, as well as the flow velocity. This information is supplied to a HIFU therapy transducer controller, which controls the HIFU transducer to transmit focused ultrasound to the sample volume of the flow locus, the center of the lumen of a blood vessel. The focused ultrasound heats and coagulates blood in the severed vessel to stem the bleeding.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: January 15, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Helen Routh, John Fraser, John Petruzzello, Shervin Ayati
  • Publication number: 20120086789
    Abstract: An imaging system for imaging a viscoelastic medium is disclosed. The imaging system comprises a variable refractive lens (4) and a transducer system (5) for generating acoustic radiation. The imaging system is operated to alternate between first and second operating modes. While the variable refractive lens is operated to alternate between a first configuration and a second configuration, the transducer is operated to alternate between generating acoustic radiation for displacing the viscoelastic medium and acoustic radiation for imaging the displacement of the viscoelastic medium. In embodiments the variable refractive lens is a fluid focus lens. Moreover, in embodiments, the imaging system is integrated with a catheter-based interaction modality, such as a tissue ablation modality.
    Type: Application
    Filed: June 15, 2010
    Publication date: April 12, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Khalid Shahzad, Ajay Anand, John Petruzzello, Shiwei Zhou, Jan Frederik Suijver
  • Patent number: 8137276
    Abstract: An ultrasonic diagnostic and therapy system is described for stopping the bleeding of severely damaged bloodvessels or vessels severed in a limb amputation. A cuff (30) is attached to the stump of the severed limb which contains a diagnostic transducer array and a HIFU transducer (42, 44). The diagnostic transducer surveys the tissue of the severed limb, searching for a Doppler flow signal. When a Doppler flow signal is detected, the range to and coordinates of the sample volume where the flow was detected are determined, as well as the flow velocity. This information is supplied to a HIFU therapy transducer controller, which controls the HIFU transducer to transmit focused ultrasound to the sample volume of the flow locus, the center of the lumen of a blood vessel. The focused ultrasound heats and coagulates blood in the severed vessel to stem the bleeding.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: March 20, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: John Petruzzello, Helen Routh, John Fraser, Shervin Ayati
  • Publication number: 20110251529
    Abstract: An ablation control device (110) configured for halting, in real time, ablation of body tissue at a current ablation point to achieve a predetermined lesion size upon halting includes a control section (120) configured for registering, with a characteristic curve, one or more values and halting the ablation based on the registering. The value or values are obtained from monitoring (115), for the current ablation point, displacement caused by force applied to the body tissue. In one embodiment, halting is performed upon detecting, by the monitoring and after a peak value of the monitored displacement has occurred, an endpoint value of the monitored displacement. In another embodiment, the end-point value is determined prior to the detecting, and the determining is performed by the registering.
    Type: Application
    Filed: December 3, 2009
    Publication date: October 13, 2011
    Inventors: John Petruzzello, Ajay Anand, Shiwei Zhou
  • Patent number: 7989881
    Abstract: A vertically oriented self terminating semiconductor device such as a discrete trench MOS device (10, 38) that includes a cylindrical drift region (18) that extend downward from a surface region to a substrate (11) and a dielectric region (20) that exponentially tapers outward from the cylindrical drift region as the drift region approaches the substrate. A field plate electrode (12) is disposed on the dielectric region. Alternatively, the gate electrode (40, 46) may be disposed on the dielectric region, optionally with an underlying field plate electrode (48).
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 2, 2011
    Assignee: NXP B.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Patent number: 7968938
    Abstract: The present invention provides a vertical tapered dielectric high-voltage device (10) in which the device drift region is depicted by action of MOS field plates (30) formed in vertical trenches. The high-voltage device comprises: a substrate (32); a silicon mesa (20) formed on the substrate and having a stripe geometry, wherein the silicon mesa provides a drift region having a constant doping profile; a recessed gate (22) and source (SN) formed on the silicon mesa; a trench (26) adjacent each side of the silicon mesa; and a metal-dielectric field plate structure (12) formed in each trench; wherein each metal-dielectric field plate structure comprises a dielectric (28) and a metal field plate (30) formed over the dielectric, and wherein a thickness of the dielectric increases linearly through a depth of the trench to provide a constant longitudinal electric field.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: June 28, 2011
    Assignee: NXP B.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Publication number: 20110040189
    Abstract: A capacitive ultrasound transducer capable of operation in collapsed mode either with a reduced bias voltage, or with no bias voltage, is provided. The transducer includes a substrate that is contoured so that a middle region of the flexible membrane is collapsed against the substrate in the absence of a bias voltage. A non-collapsible gap may exists between the substrate and peripheral regions of the flexible membrane. The contour of the substrate may be such as to strain the flexible membrane past the point of collapse, or to mechanically interfere with the flexible membrane. The substrate may include a further membrane disposed beneath the flexible membrane, the further membrane being contoured so that the flexible membrane is collapsed against it. The substrate may a support disposed beneath the further membrane to deflect a corresponding portion of the further membrane upward toward the flexible membrane. The support may be a post.
    Type: Application
    Filed: December 12, 2008
    Publication date: February 17, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John Petruzzello, John Douglas Fraser, Shiwei Zhou, Benoit Dufort, Theodore James Letavic
  • Publication number: 20100274130
    Abstract: The present disclosure provides systems and methods for tracking and guiding high intensity focused ultrasound beams (HIFU). More particularly, the disclosed systems and methods involve use of acoustic radiation force impulse (ARFI) imaging to detect the focal position of an HIFU capable transducer relative to a target area. The focal position may then be 5 compared to a desired treatment location and the orientation and focus of the transducer may be adjusted accordingly so as to reconfigure and/or refocus the HIFU beam relative to the desired treatment location. The desired treatment location may be dynamically determined using bleed detection and localization (BD&L) techniques. Thus, the desired treatment location may be determined using 3D Doppler ultrasound based techniques, wherein changes in quantitative 10 parameters extracted from the Doppler spectra, e.g., Resistance Index (RI), are used to detect and localize a bleeding site for treatment.
    Type: Application
    Filed: December 17, 2008
    Publication date: October 28, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ajay Anand, John Petruzzello
  • Patent number: 7485916
    Abstract: A field effect device includes at least one segmented field plate, each of the at least one segmented field plates having a plurality of segments that each form a plate of a capacitor, wherein the field effect device is connected to an electronic element that dynamically connects selected segments to selectively set a gate-to-drain and a drain-to-source capacitance. An ultrasonic device includes a transducer coupled to a switching device that switches the transducer between a transmit mode and a receive mode switching device, wherein the switching device includes the field effect device.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: February 3, 2009
    Assignee: NXP, B.V.
    Inventors: John Petruzzello, Theodore Letavic, Benoit Dufort
  • Publication number: 20080312562
    Abstract: An ultrasonic diagnostic and therapy system is described for stopping the bleeding of severely damaged blood vessels or vessels severed in a limb amputation. A cuff is attached to the stump of the severed limb which contains a diagnostic transducer array and a HIFU transducer. The diagnostic transducer surveys the tissue of the severed limb, searching for a Doppler flow signal. When a Doppler flow signal is detected, the range to and coordinates of the sample volume where the flow was detected are determined, as well as the flow velocity. This information is supplied to a HIFU therapy transducer controller, which controls the HIFU transducer to transmit focused ultrasound to the sample volume of the flow locus, the center of the lumen of a blood vessel. The focused ultrasound heats and coagulates blood in the severed vessel to stem the bleeding.
    Type: Application
    Filed: December 7, 2006
    Publication date: December 18, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Helen Routh, John Fraser, John Petruzzello, Shervin Ayati
  • Publication number: 20080306414
    Abstract: An ultrasonic diagnostic and therapy system is described for stopping the bleeding of severely damaged blood vessels or vessels severed in a limb amputation. A cuff (30) is attached to the stump of the severed limb which contains a diagnostic transducer array and a HIFU transducer (42, 44). The diagnostic transducer surveys the tissue of the severed limb, searching for a Doppler flow signal. When a Doppler flow signal is detected, the range to and coordinates of the sample volume where the flow was detected are determined, as well as the flow velocity. This information is supplied to a HIFU therapy transducer controller, which controls the HIFU transducer to transmit focused ultrasound to the sample volume of the flow locus, the center of the lumen of a blood vessel. The focused ultrasound heats and coagulates blood in the severed vessel to stem the bleeding.
    Type: Application
    Filed: December 7, 2006
    Publication date: December 11, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: John Petruzzello, Helen Routh, John Fraser, Shervin Ayati
  • Publication number: 20080281202
    Abstract: An ultrasonic diagnostic and therapy system is described for stopping the bleeding of severely damaged blood vessels or vessels severed in a limb amputation. A cuff (30) is attached to the stump of the severed limb which contains a diagnostic transducer array (52, 54, 56) and a HIFU transducer (42, 44). The diagnostic transducer surveys the tissue of the severed limb, searching for a Doppler flow signal. When a Doppler flow signal is detected, the range to and coordinates of the sample volume where the flow was detected are determined, as well as the flow velocity. This information is supplied to a HIFU therapy transducer controller, which controls the HIFU transducer to transmit focused ultrasound to the sample volume of the flow locus, the center of the lumen of a blood vessel. The focused ultrasound heats and coagulates blood in the severed vessel to stem the bleeding.
    Type: Application
    Filed: December 7, 2006
    Publication date: November 13, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: John Fraser, Helen Routh, Shervin Ayati, John Petruzzello
  • Publication number: 20080272428
    Abstract: A vertically oriented self terminating discrete trench MOS device (1) that includes a cylindrical drift region (18) that extend downward from a surface region to a substrate (11) and a dielectric region (20) that exponentially tapers outward from the cylindrical drift region as the drift region approaches the substrate.
    Type: Application
    Filed: February 7, 2006
    Publication date: November 6, 2008
    Applicant: NXP B.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Patent number: 7439585
    Abstract: A Silicon on Insulator (SOI) device is disclosed wherein an extension of P-type doping (303) is implanted between the buried oxide layer of the device and the SOI layer. The extension is of a size and shape to permit the source (309) to be biased at a voltage significantly less than the handler wafer (304) and drain, a condition under which prior art SOI devices may not properly operate.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: October 21, 2008
    Assignee: NXP B.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Publication number: 20080128743
    Abstract: The present invention provides a vertical tapered dielectric high-voltage device (10) in which the device drift region is depicted by action of MOS field plates (30) formed in vertical trenches. The high-voltage device comprises: a substrate (32); a silicon mesa (20) formed on the substrate and having a stripe geometry, wherein the silicon mesa provides a drift region having a constant doping profile; a recessed gate (22) and source (SN) formed on the silicon mesa; a trench (26) adjacent each side of the silicon mesa; and a metal-dielectric field plate structure (12) formed in each trench; wherein each metal-dielectric field plate structure comprises a dielectric (28) and a metal field plate (30) formed over the dielectric, and wherein a thickness of the dielectric increases linearly through a depth of the trench to provide a constant longitudinal electric field.
    Type: Application
    Filed: June 10, 2005
    Publication date: June 5, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Publication number: 20070080389
    Abstract: A field effect device includes at least one segmented field plate, each of the at least one segmented field plates having a plurality of segments that each form a plate of a capacitor, wherein the field effect device is connected to an electronic element that dynamically connects selected segments to selectively set a gate-to-drain and a drain-to-source capacitance. An ultrasonic device includes a transducer coupled to a switching device that switches the transducer between a transmit mode and a receive mode switching device, wherein the switching device includes the field effect device.
    Type: Application
    Filed: September 21, 2004
    Publication date: April 12, 2007
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: John Petruzzello, Theodore Letavic, Benoit Dufort