Patents by Inventor John Robert Lockemeyer

John Robert Lockemeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7713903
    Abstract: A carrier that may be used in the manufacture of an olefin epoxidation catalyst is provided that is prepared from a process involving depositing boron on the carrier and subsequently calcining the carrier. Also provided is an olefin epoxidation catalyst comprising a silver component deposited on such a calcined carrier. Also provided is a process for the epoxidation of an olefin employing such a catalyst and a process for producing a 1,2-diol, a 1,2-diol ether, or an alkanolamine employing the olefin oxide.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: May 11, 2010
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Jian Lu, Nga Thi-Huyen Vi
  • Publication number: 20090275764
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Inventors: Randall Clayton YEATES, John Robert Lockemeyer, Marek Matusz
  • Publication number: 20090264678
    Abstract: A carrier that may be used in the manufacture of an olefin epoxidation catalyst is provided that is prepared from a process involving depositing boron on the carrier and subsequently calcining the carrier. Also provided is an olefin epoxidation catalyst comprising a silver component deposited on such a calcined carrier. Also provided is a process for the epoxidation of an olefin employing such a catalyst and a process for producing a 1,2-diol, a 1,2-diol ether, or an alkanolamine employing the olefin oxide.
    Type: Application
    Filed: August 25, 2008
    Publication date: October 22, 2009
    Inventors: John Robert LOCKEMEYER, Jian Lu, Nga Thi-Huyen, VI
  • Patent number: 7560411
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: July 14, 2009
    Assignee: Shell Oil Company
    Inventors: Randall Clayton Yeates, John Robert Lockemeyer, Marek Matusz
  • Publication number: 20090177016
    Abstract: A catalyst which comprises a carrier and silver deposited on the carrier, which carrier has a surface area of at least 1 m2/g, and a pore size distribution such that pores with diameters in the range of from 0.2 to 10 ?m represent at least 70% of the total pore volume and such pores together provide a pore volume of at least 0.
    Type: Application
    Filed: March 10, 2009
    Publication date: July 9, 2009
    Applicant: Sell Oil Company
    Inventors: John Robert LOCKEMEYER, Randall Clayton Yeates, Thomas Szymanski, Donald James Remus, William Herman Gerdes
  • Patent number: 7547795
    Abstract: A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a relatively small inside (bore) diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: June 16, 2009
    Assignee: Shell Oil Company
    Inventors: Marek Matusz, Michael Alan Richard, John Robert Lockemeyer, Alouisius Nicolaas Renee Bos, Dominicus Maria Rekers, Donald Reinalda, Randall Clayton Yeates, Paul Michael McAllister
  • Patent number: 7538235
    Abstract: A process for preparing an epoxidation catalyst comprising silver and a high-selectivity dopant on a support, which process comprises depositing a base having a pKb of at most 3.5 when measured in water at 25° C., on the support prior to depositing silver on the support, and depositing silver and a high-selectivity dopant on the support; the epoxidation catalyst; and a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the epoxidation catalyst.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 26, 2009
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Publication number: 20090131695
    Abstract: A catalyst which comprises a carrier and silver deposited on the carrier, which carrier has a surface area of at least 1.3 m2/g, a median pore diameter of more than 0.8 ?m, and a pore size distribution wherein at least 80% of the total pore volume is contained in pores with diameters in the range of from 0.1 to 10 ?m and at least 80% of the pore volume contained in the pores with diameters in the range of from 0.1 to 10 ?m is contained in pores with diameters in the range of from 0.
    Type: Application
    Filed: June 6, 2006
    Publication date: May 21, 2009
    Inventors: William Herman Gerdes, John Robert Lockemeyer, Donald James Remus, Thomas Szymanski, Randall Clayton Yeates
  • Patent number: 7507689
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: March 24, 2009
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7504525
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 17, 2009
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7485597
    Abstract: A method for improving the selectivity of a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, which method comprises contacting the catalyst, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.; and a process for the epoxidation of an olefin, which process comprises contacting a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 3, 2009
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates, Donald Reinalda
  • Patent number: 7439375
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 21, 2008
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7425647
    Abstract: A process for preparing a catalyst by (a) selecting a carrier which is a silica based carrier which has been subjected to a series of washings with one or more aqueous liquids consisting of aqueous liquids which have a pH of least 3, when measured at 20° C., or which is a silica based carrier which is formed from materials one or more of which have been subjected to this series of washings, (b) precipitating a Group 8 metal compound onto the carrier, (c) converting the precipitated Group 8 metal compound into metallic species, and (d) subjecting the Group 8 metal/carrier composition to a purification treatment, before or after step (c); a catalyst which is obtainable by this process; and a process for preparing an alkenyl carboxylate by reacting a mixture comprising an olefin, a carboxylic acid and oxygen in the presence of the catalyst.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: September 16, 2008
    Assignee: Shell Oil Company
    Inventors: Michael Francis Lemanski, John Robert Lockemeyer
  • Publication number: 20080154051
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Jeroen Willem Bolk, Alouisius Nicolaas Renee Bos, Wayne Errol Evans, John Robert Lockemeyer, Paul Michael Mcallister, Bernardus Franciscus Josef Marie Ramakers, Dominicus Maria Rekers, Mathias Jozef Paul Slapak
  • Publication number: 20080154052
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Jeroen Willem Bolk, Alouisius Nicolaas Renee Bos, Wayne Errol Evans, John Robert Lockemeyer, Paul Michael McAllister, Bernardus Franciscus Josef Marie Ramakers, Dominicus Maria Rekers, Mathias Jozef Paul Slapak
  • Publication number: 20080125610
    Abstract: A process for treating a carrier, or a precursor thereof, to at least partly remove impurities comprising contacting the carrier, or the precursor thereof, with a treatment solution comprising a salt; a process for preparing a catalyst; the catalyst; a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Application
    Filed: November 15, 2007
    Publication date: May 29, 2008
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates
  • Patent number: 7259129
    Abstract: A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a relatively small inside (bore) diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: August 21, 2007
    Assignee: Shell Oil Company
    Inventors: Marek Matusz, Michael Alan Richard, John Robert Lockemeyer, Alouisius Nicolaas Renee Bos, Dominicus Maria Rekers, Donald Reinalda, Randall Clayton Yeates
  • Patent number: 7247600
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: July 24, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7232918
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 19, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7232786
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 19, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer