Patents by Inventor John Tolle

John Tolle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230145240
    Abstract: A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 11, 2023
    Inventors: John Tolle, Joe Margetis, David Kohen
  • Publication number: 20230102558
    Abstract: Methods of reducing wafer bowing in 3D DRAM devices are described using a 3-color process. A plurality of film stacks are formed on a substrate surface, each of the film stacks comprises two doped SiGe layers having different dopant amounts and/or Si:Ge ratios and a doped silicon layer. 3D DRAM devices are also described.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Arvind Kumar, Mahendra Pakala, Ellie Y. Yieh, John Tolle, Thomas Kirschenheiter, Anchuan Wang, Zihui Li
  • Publication number: 20230029344
    Abstract: A method and apparatus for forming a super-lattice structure on a substrate is described herein. The super-lattice structure includes a plurality of silicon-germanium layers and a plurality of silicon layers disposed in a stacked pattern. The methods described herein produce a super-lattice structure with transition width of less than about 1.4 nm between each of the silicon-germanium layers and an adjacent silicon layer. The methods described herein include flowing one or a combination of a silicon containing gas, a germanium containing gas, and a halogenated species.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 26, 2023
    Inventors: John TOLLE, Thomas KIRSCHENHEITER, Joe MARGETIS, Patricia M. LIU, Zuoming ZHU, Flora Fong-Song CHANG
  • Patent number: 11557474
    Abstract: A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 17, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Joe Margetis, David Kohen
  • Publication number: 20220367175
    Abstract: A system and method for removing both carbon-based contaminants and oxygen-based contaminants from a semiconductor substrate within a single process chamber is disclosed. The invention may comprise utilization of remote plasma units and multiple gas sources to perform the process within the single process chamber.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Xing Lin, Peipei Gao, Fei Wang, John Tolle, Bubesh Babu Jotheeswaran, Vish Ramanathan, Eric Hill
  • Publication number: 20220310825
    Abstract: A method for depositing a Group IV semiconductor is disclosed. The method may include, providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The methods may further include, exposing the substrate to at least one Group IV precursor and exposing the substrate to at least one Group IIIA metalorganic dopant precursor. The methods may further include depositing a Group IV semiconductor on a surface of the substrate. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventors: Joe Margetis, John Tolle
  • Patent number: 11374112
    Abstract: A method for depositing a Group IV semiconductor is disclosed. The method may include, providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The methods may further include, exposing the substrate to at least one Group IV precursor and exposing the substrate to at least one Group IIIA metalorganic dopant precursor. The methods may further include depositing a Group IV semiconductor on a surface of the substrate. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: June 28, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Joe Margetis, John Tolle
  • Publication number: 20220130668
    Abstract: A method for forming a layer on a substrate includes providing a substrate in a reactor of a semiconductor processing system, the reactor having a divider separating an upper chamber from a lower chamber and a substrate holder therein, the substrate having upper and lower surfaces. The wafer is positioned within the reactor using the substrate holder such that the upper surface bounds the upper chamber, a silicon-containing gas is flowed through the upper chamber to deposit a layer of the upper surface, and a halogen-containing gas is flowed through the lower chamber to etch a deposited film on at least one wall bounding the lower chamber while flowing the silicon-containing gas through the upper chamber. Semiconductor processing systems are also described.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 28, 2022
    Inventors: John Tolle, Robert Vyne
  • Patent number: 11264255
    Abstract: A system for removing an oxide material from a surface of a substrate can include a substrate tray to receive the substrate, and a cooling body to receive the substrate tray. The system may include a first temperature control element configured to control a temperature of the substrate tray and a second temperature control element configured to control a temperature of the cooling body, where the first temperature control element and the second temperature control element can be independently controlled. A method for removing oxide material from a surface of a substrate can include providing the substrate on a substrate tray having heating elements, cooling the substrate by transferring heat from the substrate tray to a cooling body, depositing a halogen-containing material on the cooled substrate while the substrate is on the cooling body, and subsequently sublimating the halogen-containing material by heating the cooled substrate by transferring heat from the substrate tray to the substrate.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 1, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: John Tolle, Eric R. Hill
  • Publication number: 20210375622
    Abstract: Methods and devices for epitaxially growing boron- and gallium-doped silicon germanium layers. The layers may be used, for example, as a p-type source and/or drain regions in field effect transistors.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 2, 2021
    Inventors: Lucas Petersen Barbosa Lima, Joe Margetis, John Tolle, Rami Khazaka, Qi Xie
  • Patent number: 11168395
    Abstract: A flange, flange assembly, and reactor system including the flange and flange assembly are disclosed. An exemplary flange assembly includes heated and cooled sections to independently control temperatures of sections of the flange. Methods of using the flange, flange assembly and reactor system are also disclosed.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 9, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Sonti Sreeram, John Tolle, Joe Margetis, Junwei Su
  • Patent number: 11053585
    Abstract: A reactor system and related methods are provided which may include a heating element in a wafer tray. The heating element may be used to heat the wafer tray and a substrate or wafer seated on the wafer tray within a reaction chamber assembly, and may be used to cause sublimation of a native oxide of the wafer.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: July 6, 2021
    Inventors: John Tolle, Eric Hill
  • Patent number: 11018002
    Abstract: A method for selectively depositing a Group IV semiconductor on a surface of a substrate is disclosed. The method may include, providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The method may further include, exposing the substrate to at least one Group IV precursor, and exposing the substrate to at least one Group IIIA halide dopant precursor. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: May 25, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Joe Margetis, John Tolle
  • Patent number: 11004977
    Abstract: A method for depositing a Group IV semiconductor on a surface of a substrate is disclosed. The method may include: providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The methods may further include: exposing the substrate to at least one Group IV precursor and exposing the substrate to at least one Group IIIA dopant precursor; wherein the at least one Group IIIA dopant precursor comprises a borohydride, an organic borohydride, a halide, or an organohalide. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: May 11, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Joe Margetis
  • Publication number: 20210035802
    Abstract: A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
    Type: Application
    Filed: July 17, 2020
    Publication date: February 4, 2021
    Inventors: John Tolle, Joe Margetis, David Kohen
  • Publication number: 20200385861
    Abstract: A method of cleaning an epitaxial reaction chamber in-situ is disclosed. The method may include a pre-coating step, a high temperature baking step, and a gas etching step. The method is able to remove residue buildup within the reaction chamber, which may be made of quartz.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 10, 2020
    Inventors: Gregory Deye, Joseph P. Margetis, John Tolle
  • Publication number: 20200340138
    Abstract: Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 29, 2020
    Inventors: John Tolle, Joseph P. Margetis
  • Patent number: 10787741
    Abstract: A system and method for providing intermediate reactive species to a reaction chamber are disclosed. The system includes an intermediate reactive species formation chamber fluidly coupled to the reaction chamber to provide intermediate reactive species to the reaction chamber. A pressure control device can be used to control an operating pressure of the intermediate reactive species formation chamber, and a heater can be used to heat the intermediate reactive species formation chamber to a desired temperature.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 29, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Eric Hill, Jereld Lee Winkler
  • Publication number: 20200224309
    Abstract: A flange, flange assembly, and reactor system including the flange and flange assembly are disclosed. An exemplary flange assembly includes heated and cooled sections to independently control temperatures of sections of the flange. Methods of using the flange, flange assembly and reactor system are also disclosed.
    Type: Application
    Filed: March 11, 2020
    Publication date: July 16, 2020
    Inventors: Sonti Sreeram, John Tolle, Joe Margetis, Junwei Su
  • Patent number: 10685834
    Abstract: A method for forming a forming a silicon germanium tin (SiGeSn) layer is disclosed. The method may include, providing a substrate within a reaction chamber, exposing the substrate to a pre-deposition precursor pulse, which comprises tin tetrachloride (SnCl4), exposing the substrate to a deposition precursor gas mixture comprising a hydrogenated silicon source, germane (GeH4), and tin tetrachloride (SnCl4), and depositing the silicon germanium tin (SiGeSn) layer over a surface of the substrate. Semiconductor device structures including a silicon germanium tin (SiGeSn) layer formed by the methods of the disclosure are also provided.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 16, 2020
    Assignee: ASM IP Holdings B.V.
    Inventors: Nupur Bhargava, Joe Margetis, John Tolle