Patents by Inventor John Tolle

John Tolle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12363960
    Abstract: A method for depositing a Group IV semiconductor is disclosed. The method may include, providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The methods may further include, exposing the substrate to at least one Group IV precursor and exposing the substrate to at least one Group IIIA metalorganic dopant precursor. The methods may further include depositing a Group IV semiconductor on a surface of the substrate. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: July 15, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: Joe Margetis, John Tolle
  • Publication number: 20250194243
    Abstract: Embodiments of the disclosure advantageously provide semiconductor devices CFET in particular and methods of manufacturing such devices having a fully strained superlattice structure with channel layers that are substantially free of defects and release layers having a reduced selective removal rate. The CFET described herein comprise a vertically stacked superlattice structure on a substrate, the vertically stacked superlattice structure comprising: a first hGAA structure on the substrate; a sacrificial layer on a top surface of the first hGAA structure, the sacrificial layer comprising silicon germanium (SiGe) having a germanium content in a range of from greater than 0% to 50% on an atomic basis; and a second hGAA structure on a top surface of the sacrificial layer. Each of the first hGAA and the second hGAA comprise alternating layers of nanosheet channel layer that comprise silicon (Si) and nanosheet release layer that comprise doped silicon germanium (SiGe).
    Type: Application
    Filed: February 19, 2025
    Publication date: June 12, 2025
    Applicant: Applied Materials, Inc
    Inventors: Andrew Anthony Cockburn, Vanessa Pena, Daniel Philippe Cellier, John Tolle, Thomas Kirschenheiter, Wei Hong, Ellie Y. Yieh, Mehul Naik, Seshadri Ramaswami
  • Patent number: 12262559
    Abstract: Embodiments of the disclosure advantageously provide semiconductor devices CFET in particular and methods of manufacturing such devices having a fully strained superlattice structure with channel layers that are substantially free of defects and release layers having a reduced selective removal rate. The CFET described herein comprise a vertically stacked superlattice structure on a substrate, the vertically stacked superlattice structure comprising: a first hGAA structure on the substrate; a sacrificial layer on a top surface of the first hGAA structure, the sacrificial layer comprising silicon germanium (SiGe) having a germanium content in a range of from greater than 0% to 50% on an atomic basis; and a second hGAA structure on a top surface of the sacrificial layer. Each of the first hGAA and the second hGAA comprise alternating layers of nanosheet channel layer that comprise silicon (Si) and nanosheet release layer that comprise doped silicon germanium (SiGe).
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: March 25, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Anthony Cockburn, Vanessa Pena, Daniel Philippe Cellier, John Tolle, Thomas Kirschenheiter, Wei Hong, Ellie Y. Yieh, Mehul Naik, Seshadri Ramaswami
  • Publication number: 20250092566
    Abstract: Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.
    Type: Application
    Filed: December 3, 2024
    Publication date: March 20, 2025
    Inventors: John Tolle, Joseph P. Margetis
  • Patent number: 12252785
    Abstract: A method of cleaning an epitaxial reaction chamber in-situ is disclosed. The method may include a pre-coating step, a high temperature baking step, and a gas etching step. The method is able to remove residue buildup within the reaction chamber, which may be made of quartz.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 18, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: Gregory Deye, Joseph P. Margetis, John Tolle
  • Publication number: 20250037987
    Abstract: Exemplary semiconductor processing methods may include performing a pre-treatment on a substrate housed within a processing region of a semiconductor processing chamber. The substrate may include a layer of silicon-and-carbon-containing material. The pre-treatment may remove native oxide or residue from a surface of the layer of silicon-and-carbon-containing material. The methods may include providing a silicon-containing precursor to the processing region of the semiconductor processing chamber. The methods may include contacting the substrate with the silicon-containing precursor. The contacting may deposit a layer of silicon-containing material on the layer of silicon-and-carbon-containing material. The methods may include providing an oxygen-containing precursor to the processing region of the semiconductor processing chamber. The methods may include contacting the substrate with the oxygen-containing precursor.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 30, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Stephen Weeks, Hansel Lo, John Tolle, Christopher S. Olsen, Siddarth Krishnan
  • Patent number: 12195876
    Abstract: Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.
    Type: Grant
    Filed: September 26, 2023
    Date of Patent: January 14, 2025
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Joseph P. Margetis
  • Publication number: 20240321605
    Abstract: A semiconductor processing apparatus is disclosed that may include a reaction chamber joined by an upstream inlet flange and a downstream outlet flange wherein a longitudinal direction of the chamber extends from the inlet flange to the outlet flange and a plurality of ribs are provided on an outer surface of at least an upper chamber wall. The semiconductor processing apparatus may also include at least one array of heating elements disposed above the reaction chamber and at least one variable positioning device coupled to the at least one array of heating elements and configured to controllably adjust the position of the at least one array of heating elements relative to the position of the plurality of ribs.
    Type: Application
    Filed: May 30, 2024
    Publication date: September 26, 2024
    Inventors: Shiva Rajavelu, John Tolle, Rich McCartney
  • Patent number: 12040200
    Abstract: A semiconductor processing apparatus is disclosed that may include a reaction chamber joined by an upstream inlet flange and a downstream outlet flange wherein a longitudinal direction of the chamber extends from the inlet flange to the outlet flange and a plurality of ribs are provided on an outer surface of at least an upper chamber wall. The semiconductor processing apparatus may also include at least one array of heating elements disposed above the reaction chamber and at least one variable positioning device coupled to the at least one array of heating elements and configured to controllably adjust the position of the at least one array of heating elements relative to the position of the plurality of ribs.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 16, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Shiva Rajavelu, John Tolle, Rich McCartney
  • Publication number: 20240079231
    Abstract: A method for forming a layer on a substrate includes providing a substrate in a reactor of a semiconductor processing system, the reactor having a divider separating an upper chamber from a lower chamber and a substrate holder therein, the substrate having upper and lower surfaces. The wafer is positioned within the reactor using the substrate holder such that the upper surface bounds the upper chamber, a silicon-containing gas is flowed through the upper chamber to deposit a layer of the upper surface, and a halogen-containing gas is flowed through the lower chamber to etch a deposited film on at least one wall bounding the lower chamber while flowing the silicon-containing gas through the upper chamber. Semiconductor processing systems are also described.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: John Tolle, Robert Vyne
  • Patent number: 11901179
    Abstract: A method for forming a layer on a substrate includes providing a substrate in a reactor of a semiconductor processing system, the reactor having a divider separating an upper chamber from a lower chamber and a substrate holder therein, the substrate having upper and lower surfaces. The wafer is positioned within the reactor using the substrate holder such that the upper surface bounds the upper chamber, a silicon-containing gas is flowed through the upper chamber to deposit a layer of the upper surface, and a halogen-containing gas is flowed through the lower chamber to etch a deposited film on at least one wall bounding the lower chamber while flowing the silicon-containing gas through the upper chamber. Semiconductor processing systems are also described.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: February 13, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Robert Vyne
  • Publication number: 20240011189
    Abstract: Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: John Tolle, Joseph P. Margetis
  • Patent number: 11814747
    Abstract: Gas-phase reactor systems and methods suitable for use with precursors that are solid phase at room temperature and pressure are disclosed. The systems and methods as described herein can be used to, for example, form amorphous, polycrystalline, or epitaxial layers (e.g., one or more doped semiconductor layers) on a surface of a substrate.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: November 14, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Joseph P. Margetis
  • Publication number: 20230326925
    Abstract: Embodiments of the disclosure advantageously provide semiconductor devices CFET in particular and methods of manufacturing such devices having a fully strained superlattice structure with channel layers that are substantially free of defects and release layers having a reduced selective removal rate. The CFET described herein comprise a vertically stacked superlattice structure on a substrate, the vertically stacked superlattice structure comprising: a first hGAA structure on the substrate; a sacrificial layer on a top surface of the first hGAA structure, the sacrificial layer comprising silicon germanium (SiGe) having a germanium content in a range of from greater than 0% to 50% on an atomic basis; and a second hGAA structure on a top surface of the sacrificial layer. Each of the first hGAA and the second hGAA comprise alternating layers of nanosheet channel layer that comprise silicon (Si) and nanosheet release layer that comprise doped silicon germanium (SiGe).
    Type: Application
    Filed: April 7, 2022
    Publication date: October 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Andrew Anthony Cockburn, Vanessa Pena, Daniel Philippe Cellier, John Tolle, Thomas Kirschenheiter, Wei Hong, Ellie Y. Yieh, Mehul Naik, Seshadri Ramaswami
  • Patent number: 11764058
    Abstract: Methods of reducing wafer bowing in 3D DRAM devices are described using a 3-color process. A plurality of film stacks are formed on a substrate surface, each of the film stacks comprises two doped SiGe layers having different dopant amounts and/or Si:Ge ratios and a doped silicon layer. 3D DRAM devices are also described.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Arvind Kumar, Mahendra Pakala, Ellie Y. Yieh, John Tolle, Thomas Kirschenheiter, Anchuan Wang, Zihui Li
  • Patent number: 11719842
    Abstract: A system, method and program product for implementing a machine learning platform that processes a data map having feature and operational information. A system is disclosed that includes an interpretable machine learning model that generates a function in response to an inputted data map, wherein the data map includes feature data and operational data over a region of interest, and wherein the function relates a set of predictive variables to one or more response variables; an integration/interpolation system that generates the data map from a set of disparate data sources; and an analysis system that evaluates the function to predict outcomes at unique points in the region of interest.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: August 8, 2023
    Assignees: International Business Machines Corporation, Shell USA, Inc.
    Inventors: Jorge Luis Guevara Diaz, Bianca Zadrozny, Breno William Santos Rezende de Carvalho, Alvaro Bueno Buoro, Matthias Kormaksson, Ligang Lu, John Tolle, Detlef Hohl, Jan Limbeck, Mingqi Wu
  • Publication number: 20230145240
    Abstract: A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 11, 2023
    Inventors: John Tolle, Joe Margetis, David Kohen
  • Publication number: 20230102558
    Abstract: Methods of reducing wafer bowing in 3D DRAM devices are described using a 3-color process. A plurality of film stacks are formed on a substrate surface, each of the film stacks comprises two doped SiGe layers having different dopant amounts and/or Si:Ge ratios and a doped silicon layer. 3D DRAM devices are also described.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Arvind Kumar, Mahendra Pakala, Ellie Y. Yieh, John Tolle, Thomas Kirschenheiter, Anchuan Wang, Zihui Li
  • Patent number: 11557474
    Abstract: A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 17, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: John Tolle, Joe Margetis, David Kohen
  • Publication number: 20220367175
    Abstract: A system and method for removing both carbon-based contaminants and oxygen-based contaminants from a semiconductor substrate within a single process chamber is disclosed. The invention may comprise utilization of remote plasma units and multiple gas sources to perform the process within the single process chamber.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Xing Lin, Peipei Gao, Fei Wang, John Tolle, Bubesh Babu Jotheeswaran, Vish Ramanathan, Eric Hill