Patents by Inventor John West
John West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240091757Abstract: A method for activating a catalyst is described comprising the steps of: (i) installing a reduced and passivated catalyst containing crystallites of a catalytic metal comprising nickel, cobalt or iron in elemental form encapsulated by a layer comprising an oxide of the catalytic metal in a reactor, such as a steam methane reforming reactor, in which it is to be used, and (ii) heating the reduced and passivated catalyst in the reactor under a vacuum or an inert gas to a temperature in the range (TT?X) to (TT+Y), where TT is the Tammann temperature of the catalytic metal in elemental form in degrees Centigrade, X is 400 and Y is 200, to form a catalytically active surface on the catalyst without requiring the application of a reducing gas.Type: ApplicationFiled: March 3, 2022Publication date: March 21, 2024Inventors: Alan BOOTLAND, David DAVIS, Mikael CARLSSON, Jonathon HIGGINS, Andrew Edward RICHARDSON, John WEST, Emma SOFTLEY
-
Patent number: 11935625Abstract: A computer-implemented method for processing and/or analyzing nucleic acid sequencing data comprises receiving a first data input and a second data input. The first data input comprises untargeted sequencing data generated from a first nucleic acid sample obtained from a subject. The second data input comprises target-specific sequencing data generated from a second nucleic acid sample obtained from the subject. Next, with the aid of a computer processor, the first data input and the second data input are combined to produce a combined data set. Next, an output derived from the combined data set is generated. The output is indicative of the presence or absence of one or more polymorphisms of the first nucleic acid sample and/or the second nucleic acid sample.Type: GrantFiled: November 19, 2020Date of Patent: March 19, 2024Assignee: PERSONALIS, INC.Inventors: Jason Harris, Mark R. Pratt, John West, Richard Chen, Ming Li
-
Patent number: 11860211Abstract: Systems and methods are described for monitoring a high voltage electrical system in a vehicle. An interface circuit is configured to provide isolation between a high voltage component of the vehicle and a control module. The interface circuit comprises a high voltage constant current source, a voltage threshold detector and an electrical isolation circuit. The high voltage constant current source is configured to receive an input at a first voltage from the high voltage component. The voltage threshold detector is configured to receive an output from the high voltage constant current source and to output a signal to indicate whether the voltage of the high voltage component is at, or below, a desired voltage.Type: GrantFiled: December 8, 2021Date of Patent: January 2, 2024Assignee: Ford Global Technologies, LLCInventors: Michael Robert Garrard, Christopher Michael John West
-
Patent number: 11814750Abstract: Provided herein are compositions, methods, and systems for sample processing and/or data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample from a human, non-human, and combinations thereof.Type: GrantFiled: November 20, 2020Date of Patent: November 14, 2023Assignee: Personalis, Inc.Inventors: John West, Richard Chen, Christian Haudenschild, Gabor Bartha, Shujun Luo
-
Publication number: 20230295721Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: ApplicationFiled: May 5, 2023Publication date: September 21, 2023Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
-
Patent number: 11753686Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.Type: GrantFiled: October 7, 2020Date of Patent: September 12, 2023Assignee: Personalis, Inc.Inventor: John West
-
Publication number: 20230227906Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: ApplicationFiled: March 7, 2023Publication date: July 20, 2023Inventors: John West, Christian Haudenschild, Richard Chen
-
Publication number: 20230203580Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: ApplicationFiled: March 6, 2023Publication date: June 29, 2023Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
-
Publication number: 20230176104Abstract: Systems and methods are described for monitoring a high voltage electrical system in a vehicle. An interface circuit is configured to provide isolation between a high voltage component of the vehicle and a control module. The interface circuit comprises a high voltage constant current source, a voltage threshold detector and an electrical isolation circuit. The high voltage constant current source is configured to receive an input at a first voltage from the high voltage component. The voltage threshold detector is configured to receive an output from the high voltage constant current source and to output a signal to indicate whether the voltage of the high voltage component is at, or below, a desired voltage.Type: ApplicationFiled: December 8, 2021Publication date: June 8, 2023Inventors: Michael Robert Garrard, Christopher Michael John West
-
Patent number: 11649507Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.Type: GrantFiled: May 19, 2022Date of Patent: May 16, 2023Assignee: Personalis, Inc.Inventor: John West
-
Patent number: 11649499Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: GrantFiled: November 23, 2022Date of Patent: May 16, 2023Assignee: Personalis, Inc.Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
-
Patent number: 11643685Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: GrantFiled: May 18, 2022Date of Patent: May 9, 2023Assignee: Personalis, Inc.Inventors: John West, Christian Haudenschild, Richard Chen
-
Patent number: 11634767Abstract: Provided herein are compositions, methods, and systems for sample processing and/or data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample from a human, non-human, and combinations thereof.Type: GrantFiled: September 25, 2020Date of Patent: April 25, 2023Assignee: Personalis, Inc.Inventors: John West, Richard Chen, Christian Haudenschild, Gabor Bartha, Shujun Luo
-
Publication number: 20230115039Abstract: The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface.Type: ApplicationFiled: December 13, 2022Publication date: April 13, 2023Applicant: Personalis, Inc.Inventors: Charles Wilbur ABBOTT, III, Sean Michael BOYLE, Rachel Marty PYKE, Eric LEVY, Dattatreya MELLACHERUVU, Rena MCCLORY, Richard CHEN, Robert POWER, Gabor BARTHA, Jason HARRIS, Pamela MILANI, Prateek TANDON, Paul MCNITT, Massimo MORRA, Sejal DESAI, Juan-Sebastian SALVIDAR, Michael CLARK, Christian HAUDENSCHILD, John WEST, Nick PHILLIPS, Simo V. ZHANG
-
Publication number: 20230103464Abstract: The present disclosure provides methods and systems for personalized genetic testing of disease in a subject, in particular for identifying and tracking genetic mutations identified in an individual subject to monitor for cancer or for the spread or recurrence of the disease. In some embodiments, custom assays, including custom panels designed to target sequence data corresponding to both subject-specific loci and other loci known for cancer-causing or therapy resistance mutations, are designed based upon the sequencing of a screening biopsy sample. Such custom assays are then run on subsequently obtained tissue samples, such as tissue obtained from a surgical resection of a primary or metastatic tumor or from a lymph node biopsy. The subsequently obtained tissue samples can be taken from the subject at various time points after an initial screening biopsy to further allow for extended monitoring of the subject for spread or recurrence of the disease.Type: ApplicationFiled: October 4, 2022Publication date: April 6, 2023Inventors: John West, Laurie Goodman, Richard Chen
-
Publication number: 20230089500Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: ApplicationFiled: November 23, 2022Publication date: March 23, 2023Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
-
Patent number: 11591653Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.Type: GrantFiled: May 13, 2022Date of Patent: February 28, 2023Assignee: Personalis, Inc.Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
-
Patent number: 11584968Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.Type: GrantFiled: October 5, 2021Date of Patent: February 21, 2023Assignee: Personalis, Inc.Inventor: John West
-
Publication number: 20230049643Abstract: The present invention relates to a process for producing a Fischer-Tropsch synthesis catalyst wherein from 15 to 40 mol. % of the cobalt thereon is in the form of cobalt oxide. The present invention also relates to a start-up process for a reduced-and-passivated cobalt-containing Fischer-Tropsch catalyst, wherein from 15 to 40 mol. % of the cobalt thereon is in the form of cobalt oxide and the reduced-and-passivated catalyst is activated by contacting the catalyst with a syngas stream.Type: ApplicationFiled: January 8, 2021Publication date: February 16, 2023Inventors: Alexander James Paterson, Richard John Mercer, John West
-
Publication number: 20230050395Abstract: Methods for generating a composite biomarker that identifies a predicted level of responsiveness of a subject to a particular type of an immunotherapy treatment is provided. The method can include generating genomic metrics that represent one or more characteristics corresponding to one or more DNA sequences. The method can also include generating transcriptomic metrics represent one or more characteristics corresponding to a set of peptides that are translated from a corresponding RNA sequence of the one or more RNA sequences. The method can also include generating a composite biomarker score derived from the set of genomic metrics and the set of transcriptomic metrics. The method can also include determining, based on the composite biomarker score, a predicted level of responsiveness of the subject to a particular type of an immunotherapy treatment.Type: ApplicationFiled: October 13, 2022Publication date: February 16, 2023Applicant: Personalis, Inc.Inventors: Charles Wilbur ABBOTT, III, Sean Michael BOYLE, Rachel Marty PYKE, Eric LEVY, Dattatreya MELLACHERUVU, Rena MCCLORY, Richard CHEN, Robert POWER, Gabor BARTHA, Jason HARRIS, Pamela MILANI, Prateek TANDON, Paul MCNITT, Massimo MORRA, Sejal DESAI, Juan-Sebastian SALVIDAR, Michael CLARK, Christian HAUDENSCHILD, John WEST, Nick PHILLIPS, Simo V. ZHANG