Patents by Inventor John West

John West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11299783
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 12, 2022
    Assignee: Personalis, INC.
    Inventors: John West, Christian Haudenschild, Richard Chen
  • Publication number: 20220098662
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Publication number: 20220081716
    Abstract: The present disclosure provides methods and systems for personalized genetic testing of a subject. In some embodiments, a sequencing assay is performed on a biological sample from the subject, which then leads to genetic information related to the subject. Next, nucleic acid molecules are array-synthesized or selected based on the genetic information derived from data of the sequencing assay. At least some of the nucleic acid molecules may then be used in an assay which may provide additional information on one or more biological samples from the subject or a biological relative of the subject.
    Type: Application
    Filed: June 23, 2021
    Publication date: March 17, 2022
    Inventors: John West, Christian Haudenschild, Richard Chen
  • Publication number: 20220056538
    Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.
    Type: Application
    Filed: October 5, 2021
    Publication date: February 24, 2022
    Inventor: John West
  • Publication number: 20220056521
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 24, 2022
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Patent number: 11187768
    Abstract: The present invention relate to a system and associate method of MRI and MR spectroscopy which provide stable measurements of the relaxation times, T1 and T2, by using tailored multi-band RF pulses that direct control of the saturation conditions in the background pool of macro-molecular protons, and hence provide a flexible means to induce constant Magnetisation Transfer (MT) effects. In doing this, equal saturation of the background pool is obtained for all measurements independent of the parameters that may be changed, for example, the rotation rate used to obtain a desired flip angle, that is, the degree of change in the magnetisation of the free pool of protons.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 30, 2021
    Assignee: King's College London
    Inventors: Rui Pedro Azeredo Gomes Teixeira, Joseph Vilmos Hajnal, Shaihan Jalal Malik, Daniel John West
  • Patent number: 11155867
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: October 26, 2021
    Assignee: PERSONALIS, INC.
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Patent number: 11142802
    Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 12, 2021
    Assignee: PERSONALIS, INC.
    Inventor: John West
  • Publication number: 20210246510
    Abstract: Provided herein are compositions, methods, and systems for sample processing and/or data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample from a human, non-human, and combinations thereof.
    Type: Application
    Filed: November 20, 2020
    Publication date: August 12, 2021
    Inventors: John West, Richard Chen, Christian Haudenschild, Gabor Bartha, Shujun Luo
  • Publication number: 20210238677
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Publication number: 20210193260
    Abstract: A computer-implemented method for processing and/or analyzing nucleic acid sequencing data comprises receiving a first data input and a second data input. The first data input comprises untargeted sequencing data generated from a first nucleic acid sample obtained from a subject. The second data input comprises target-specific sequencing data generated from a second nucleic acid sample obtained from the subject. Next, with the aid of a computer processor, the first data input and the second data input are combined to produce a combined data set. Next, an output derived from the combined data set is generated. The output is indicative of the presence or absence of one or more polymorphisms of the first nucleic acid sample and/or the second nucleic acid sample.
    Type: Application
    Filed: November 19, 2020
    Publication date: June 24, 2021
    Inventors: Jason Harris, Mark R. Pratt, John West, Richard Chen, Ming Li
  • Publication number: 20210173241
    Abstract: Films, systems, and methods for measuring shear stress are described. In an embodiment, the film comprises an optically transmissive polymer matrix disposed on a substrate; and a liquid crystal dispersed in the optically transmissive polymer matrix, wherein at least a portion of the liquid crystal protrudes from or is exposed on a side of the optically transmissive polymer matrix opposite the substrate.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 10, 2021
    Applicants: University of Washington, Kent State University
    Inventors: Dana Dabiri, John West, Junren Wang
  • Patent number: 10983920
    Abstract: Examples herein describe techniques for providing a customizable direct memory access (DMA) interface which can permit user logic to change or control how DMA read and writes are performed. In one example, a DMA engine may be hardened (e.g., include circuitry formed from a semiconductor material) which prevents the DMA engine from being reconfigured like programmable logic. Instead of changing the DMA engine, the user logic can change or customize the DMA interface between the user logic and the DMA engine. In this way, the manner in which the DMA engine performs DMA write and reads can be changed by the user logic. In one example, the DMA engine includes a bypass mode of operation where descriptors associated with DMA queues are passed through the DMA engine and to the user logic.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: April 20, 2021
    Assignee: XILINX, INC.
    Inventors: Chandrasekhar S Thyamagondlu, Darren Jue, Tao Yu, John West, Hanh Hoang, Ravi Sunkavalli
  • Patent number: 10963824
    Abstract: A network system can receive, from each of a plurality of devices operated by a respective provider, at least one set of availability data associated with that provider. Each set of availability data includes a start location, an end location, a date, and a start time range. For each set of availability data, the network system can identify a paired data set from a plurality of paired data sets based on the respective start location and the respective end location of that set of availability data, and associate an identifier of the respective provider of that set of availability data with a group associated with the identified paired data set. The network system can receive request data from a computing device of a user, determine one of the plurality of paired data sets, and select a first provider from the group associated with the determined paired data set.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 30, 2021
    Assignee: Uber Technologies, Inc.
    Inventors: Maxim Gurevich, Mircea Grecu, John West, Austin Balance, Manas Khadilkar
  • Publication number: 20210062276
    Abstract: Disclosed herein are methods for improving detection and monitoring of human diseases. The methods can be used to provide spatial and/or developmental localization of the source of each differential mutation within the body. The methods can also be used to generate a mutation map of a subject. And the mutation map can be used to monitoring state(s) of health of one or more tissues of a subject.
    Type: Application
    Filed: October 7, 2020
    Publication date: March 4, 2021
    Inventor: John West
  • Publication number: 20210062258
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Application
    Filed: October 23, 2020
    Publication date: March 4, 2021
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Publication number: 20210054452
    Abstract: Provided herein are compositions, methods, and systems for sample processing and/or data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample from a human, non-human, and combinations thereof.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 25, 2021
    Inventors: John West, Richard Chen, Christian Haudenschild, Gabor Bartha, Shujun Luo
  • Publication number: 20210047687
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 18, 2021
    Inventors: Gabor T. Bartha, Gemma Chandratillake, Richard Chen, Sarah Garcia, Hugo Yu Kor Lam, Shujun Luo, Mark R. Pratt, John West
  • Publication number: 20210017603
    Abstract: The present disclosure provides methods and systems for personalized genetic testing of a subject. In some embodiments, a sequencing assay is performed on a biological sample from the subject, which then leads to genetic information related to the subject. Next, nucleic acid molecules are array-synthesized or selected based on the genetic information derived from data of the sequencing assay. At least some of the nucleic acid molecules may then be used in an assay which may provide additional information on one or more biological samples from the subject or a biological relative of the subject.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Inventors: John West, Christian Haudenschild, Richard Chen
  • Patent number: 10828797
    Abstract: A method of patterning a combined layer of an electrically-conductive film, such as indium-tin-oxide (ITO), that is disposed on a flexible substrate includes bending the combined layer about a radius of curvature. The combined layer is initially bent in a first direction so that the electrically-conducive film is distal to the radius of curvature, so as to form initial dielectric lines in the electrically-conductive film. The combined layer is then bent in another direction so that the electrically-conductive film is proximate to the radius of curvature to further enhance the dielectric performance of the initial dielectric lines. The dielectric lines electrically isolate a portion of the electrically-conductive film that is disposed therebetween, to form an electrically conductive electrode.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: November 10, 2020
    Assignee: KENTA STATE UNIVERSITY
    Inventors: John West, Da-Wei Lee, Paul Anders Olson