Patents by Inventor Jonathan James Klaren

Jonathan James Klaren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955932
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11949385
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: April 2, 2024
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Patent number: 11923807
    Abstract: Circuits and methods for improving IC yield during automated test equipment (ATE) calibration of circuit designs which require IDD calibration and use a closed feedback bias circuit, such as amplifier circuits. The circuit designs include bias branch/active circuit architectures where the active circuit includes one or more active devices. An example first embodiment uses an on-chip calibration switch between the on-chip grounds of a bias network and an active circuit comprising an amplifier. During calibration of the active circuit by the ATE, the calibration switch is closed, and after completion of calibration, the calibration switch is opened. An example second embodiment utilizes an active on-chip feedback loop calibration circuit to equalize voltages between the on-chip grounds of a bias network and an active circuit comprising an amplifier during calibration of the active circuit.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: March 5, 2024
    Assignee: pSemi Corporation
    Inventors: Parvez H. Daruwalla, Yucheng Tong, Jonathan James Klaren
  • Publication number: 20230387864
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20230283238
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Application
    Filed: March 3, 2023
    Publication date: September 7, 2023
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Publication number: 20230208365
    Abstract: Methods and devices used in mobile receiver front end to support multiple paths and multiple frequency bands are described. The presented devices and methods provide benefits of scalability, frequency band agility, as well as size reduction by using one low noise amplifier per simultaneous outputs. Based on the disclosed teachings, variable gain amplification of multiband signals is also presented.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventor: Jonathan James Klaren
  • Patent number: 11664769
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: May 30, 2023
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11601094
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: March 7, 2023
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Patent number: 11539334
    Abstract: Methods and devices used in mobile receiver front end to support multiple paths and multiple frequency bands are described. The presented devices and methods provide benefits of scalability, frequency band agility, as well as size reduction by using one low noise amplifier per simultaneous outputs. Based on the disclosed teachings, variable gain amplification of multiband signals is also presented.
    Type: Grant
    Filed: March 14, 2021
    Date of Patent: December 27, 2022
    Assignee: pSemi Corporation
    Inventor: Jonathan James Klaren
  • Publication number: 20220385240
    Abstract: Circuits and methods for improving IC yield during automated test equipment (ATE) calibration of circuit designs which require IDD calibration and use a closed feedback bias circuit, such as amplifier circuits. The circuit designs include bias branch/active circuit architectures where the active circuit includes one or more active devices. An example first embodiment uses an on-chip calibration switch between the on-chip grounds of a bias network and an active circuit comprising an amplifier. During calibration of the active circuit by the ATE, the calibration switch is closed, and after completion of calibration, the calibration switch is opened. An example second embodiment utilizes an active on-chip feedback loop calibration circuit to equalize voltages between the on-chip grounds of a bias network and an active circuit comprising an amplifier during calibration of the active circuit.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Inventors: Parvez H. Daruwalla, Yucheng Tong, Jonathan James Klaren
  • Publication number: 20220368287
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: June 17, 2022
    Publication date: November 17, 2022
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11374540
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 28, 2022
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20210281220
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 9, 2021
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Publication number: 20210273616
    Abstract: Methods and devices used in mobile receiver front end to support multiple paths and multiple frequency bands are described. The presented devices and methods provide benefits of scalability, frequency band agility, as well as size reduction by using one low noise amplifier per simultaneous outputs. Based on the disclosed teachings, variable gain amplification of multiband signals is also presented.
    Type: Application
    Filed: March 14, 2021
    Publication date: September 2, 2021
    Inventor: Jonathan James Klaren
  • Patent number: 10958220
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 23, 2021
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Patent number: 10951023
    Abstract: A variable level power clamping circuit that may be used for the bypass path of an RF receiver having a low-noise amplifier (LNA). Impedance transform circuitry is used to transform the impedance of a signal path to a higher or lower impedance at a clamping circuit, causing the voltage at the clamping circuit to be, respectively, higher (thus clamping at a lower power level) or lower (thus clamping at a higher power level), and then transform the impedance after the clamping circuit to another value, such as to the impedance of the signal path. In a variant embodiment, the clamping circuit and an impedance matching element coupled to an LNA amplification path are re-purposed by selectively connecting those circuit elements to the LNA bypass path through a suitable impedance transform element when in a bypass mode.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: March 16, 2021
    Assignee: pSemi Corporation
    Inventor: Jonathan James Klaren
  • Publication number: 20210013841
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 14, 2021
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 10756678
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: August 25, 2020
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20200244226
    Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Inventors: Jonathan James Klaren, Tero Tapio Ranta
  • Publication number: 20200227912
    Abstract: A variable level power clamping circuit that may be used for the bypass path of an RF receiver having a low-noise amplifier (LNA). Impedance transform circuitry is used to transform the impedance of a signal path to a higher or lower impedance at a clamping circuit, causing the voltage at the clamping circuit to be, respectively, higher (thus clamping at a lower power level) or lower (thus clamping at a higher power level), and then transform the impedance after the clamping circuit to another value, such as to the impedance of the signal path. In a variant embodiment, the clamping circuit and an impedance matching element coupled to an LNA amplification path are re-purposed by selectively connecting those circuit elements to the LNA bypass path through a suitable impedance transform element when in a bypass mode.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Inventor: Jonathan James Klaren