Patents by Inventor Jonathan Kwok

Jonathan Kwok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9216291
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system detects apnea and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected apnea.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: December 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu, Paul A. Haefner, Kristofer J. James
  • Patent number: 8923971
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system synchronizes the delivery of the neural stimulation pulses to the respiratory cycles using a respiratory fiducial point in the respiratory signal and a delay interval. In another embodiment, the neural stimulation system detects a respiratory disorder and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected respiratory disorder.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul A. Haefner, Kristofer J. James, Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu
  • Patent number: 8914113
    Abstract: An inspiratory muscle stimulation system uses an implantable medical device to deliver stimulation to control diaphragmatic contractions for slower and deeper breathing, thereby conditioning and strengthening inspiratory muscles. In various embodiments, respiratory and/or cardiac performance are monitored for controlling parameters of the stimulation.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: December 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Shantha Arcot-Krishnamurthy, Lili Liu, Kenneth C. Beck, Kent Lee, Jonathan Kwok, Zheng Lin
  • Patent number: 8838245
    Abstract: A system and method for treating and/or preventing is described for treating periodic breathing characterized by cyclical hyperventilation and hypoventilation, examples of which include Cheyne-Stokes respiration and central sleep apnea. The system could also be used in the treatment of other conditions involving an impairment of respiratory drive.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: September 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Zheng Lin, Kenneth C. Beck, Jonathan Kwok, Kent Lee, Yachuan Pu, Jeffrey E. Stahmann
  • Patent number: 8761876
    Abstract: Vector selection is automatically achieved via a thoracic or intracardiac impedance signal collected in a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: June 24, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Kwok, Kent Lee, Jesse W. Hartley, Jeffrey E. Stahmann, Yinghong Yu, Jiang Ding
  • Publication number: 20140025141
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system synchronizes the delivery of the neural stimulation pulses to the respiratory cycles using a respiratory fiducial point in the respiratory signal and a delay interval. In another embodiment, the neural stimulation system detects a respiratory disorder and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected respiratory disorder.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 23, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Paul A. Haefner, Kristofer J. James, Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu
  • Publication number: 20130281867
    Abstract: Vector selection is automatically achieved via a thoracic or intracardiac impedance signal collected in a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 24, 2013
    Inventors: Jonathan Kwok, Kent Lee, Jesse W. Hartley, Jeffrey E. Stahmann, Yinghong Yu, Jiang Ding
  • Patent number: 8560072
    Abstract: A system, device and method for neural control of respiration are provided. One aspect of this disclosure relates to an implantable medical device for sensing and controlling respiration during incidence of central respiratory diseases. According to various embodiments, the device includes a sensing circuit to receive sensed signals representative of an incidence of a central respiratory disease. The device also includes a neural stimulator adapted to generate neural stimulation signals, and a controller to communicate with the sensing circuit and to control the neural stimulator to stimulate a desired neural target in response to the detection of the incidence of a central respiratory disease. In an embodiment, the device includes a plurality of sensors which are adapted to monitor physiological parameters to detect the incidence of a central respiratory disease and to send signals to the sensing circuit. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: October 15, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Anthony V. Caparso, Imad Libbus, M. Jason Brooke, Kent Lee, Jonathan Kwok, Yachuan Pu
  • Publication number: 20130268030
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system detects apnea and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected apnea.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu, Paul A. Haefner, Kristofer J. James
  • Patent number: 8551010
    Abstract: An implantable respiration monitor can be used to detect disordered breathing or periodic breathing events that can be categorized, such as according to one or more of sleep, exercise, and resting awake states. The categorized frequency of such events can be compared to independently specifiable thresholds, such as to trigger an alert or responsive therapy, or to display one or more trends. The information can also be combined with detection of one or more other congestive heart failure (CHF) symptoms to generate a CHF status indicator or to trigger an alarm or responsive therapy or to display one or more trends. The alert can notify the patient or a caregiver, such as via remote monitoring. The sleep state information can be further categorized according to central sleep apnea (CSA) or obstructive sleep apnea (OSA) events.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: October 8, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yachuan Pu, Kent Lee, Jonathan Kwok, Quan Ni
  • Patent number: 8554323
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system synchronizes the delivery of the neural stimulation pulses to the respiratory cycles using a respiratory fiducial point in the respiratory signal and a delay interval. In another embodiment, the neural stimulation system detects a respiratory disorder and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected respiratory disorder.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: October 8, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul A. Haefner, Kristofer J. James, Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu
  • Publication number: 20130238051
    Abstract: A system and method for treating and/or preventing is described for treating periodic breathing characterized by cyclical hyperventilation and hypoventilation, examples of which include Cheyne-Stokes respiration and central sleep apnea. The system could also be used in the treatment of other conditions involving an impairment of respiratory drive.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Zheng Lin, Kenneth C. Beck, Jonathan Kwok, Kent Lee, Yachuan Pu, Jeffrey E. Stahmann
  • Patent number: 8521289
    Abstract: This document discusses, among other things, methods and systems for facilitating automated device programming at changeout. A method comprises receiving, from a first device, physiological data at a temporary storage device; and processing the received physiological data, wherein the processing includes determining if a first signal processing function was used by the first device and substantially offsetting the first signal processing function if the first signal processing function was used by the first device; and processing the resultant physiological data to be compatible with a second device. The method further comprising providing the processed resultant physiological data to the second device.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: August 27, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shelley M. Cazares, Dan Li, Jonathan Kwok
  • Patent number: 8483834
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system detects apnea and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected apnea.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 9, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu, Paul A. Haefner, Kristofer J. James
  • Patent number: 8473050
    Abstract: Vector selection is automatically achieved via a thoracic or intracardiac impedance signal collected in a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 25, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Kwok, Kent Lee, Jesse W. Hartley, Jeffrey E. Stahmann, Yinghong Yu, Jiang Ding
  • Patent number: 8428711
    Abstract: A system and method for treating and/or preventing is described for treating periodic breathing characterized by cyclical hyperventilation and hypoventilation, examples of which include Cheyne-Stokes respiration and central sleep apnea. The system could also be used in the treatment of other conditions involving an impairment of respiratory drive.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: April 23, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Zheng Lin, Kenneth C. Beck, Jonathan Kwok, Kent Lee, Yachuan Pu, Jeffrey E. Stahmann
  • Patent number: 8401651
    Abstract: A system, device and method for neural control of respiration are provided. One aspect of this disclosure relates to an implantable medical device for sensing and controlling respiration during incidence of central respiratory diseases. According to various embodiments, the device includes a sensing circuit to receive sensed signals representative of an incidence of a central respiratory disease. The device also includes a neural stimulator adapted to generate neural stimulation signals, and a controller to communicate with the sensing circuit and to control the neural stimulator to stimulate a desired neural target in response to the detection of the incidence of a central respiratory disease. In an embodiment, the device includes a plurality of sensors which are adapted to monitor physiological parameters to detect the incidence of a central respiratory disease and to send signals to the sensing circuit. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: March 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Anthony V. Caparso, Imad Libbus, M. Jason Brooke, Kent Lee, Jonathan Kwok, Yachuan Pu
  • Patent number: 8352032
    Abstract: Method and systems related to monitoring right ventricular function during pacing by a cardiac rhythm management device are described. One or more pacing parameters are selected to provide cardiac resynchronization therapy. For example, the one or more pacing parameters may be selected to provide an optimal or improved therapy. The heart is paced using the selected pacing parameters. While pacing with the selected parameters, pressure is sensed via a pressure sensor disposed the pulmonary artery. The sensed pressure is analyzed to determine right ventricular function achieved during the pacing using the selected pacing parameters. A signal, such as an alert signal or control signal, is generated based on the right ventricular function achieved during the pacing.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: January 8, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Barun Maskara, Jonathan Kwok, Jiang Ding, Yinghong Yu
  • Publication number: 20120330381
    Abstract: This document discusses, among other things, methods and systems for facilitating automated device programming at changeout. A method comprises receiving, from a first device, physiological data at a temporary storage device; and processing the received physiological data, wherein the processing includes determining if a first signal processing function was used by the first device and substantially offsetting the first signal processing function if the first signal processing function was used by the first device; and processing the resultant physiological data to be compatible with a second device. The method further comprising providing the processed resultant physiological data to the second device.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Inventors: Shelley Cazares, Dan Li, Jonathan Kwok
  • Publication number: 20120323292
    Abstract: A system, device and method for neural control of respiration are provided. One aspect of this disclosure relates to an implantable medical device for sensing and controlling respiration during incidence of central respiratory diseases. According to various embodiments, the device includes a sensing circuit to receive sensed signals representative of an incidence of a central respiratory disease. The device also includes a neural stimulator adapted to generate neural stimulation signals, and a controller to communicate with the sensing circuit and to control the neural stimulator to stimulate a desired neural target in response to the detection of the incidence of a central respiratory disease. In an embodiment, the device includes a plurality of sensors which are adapted to monitor physiological parameters to detect the incidence of a central respiratory disease and to send signals to the sensing circuit. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Inventors: Anthony Caparso, Imad Libbus, M. Jason Brooke, Kent Lee, Jonathan Kwok, Yachuan Pu