Patents by Inventor Jonathan S. Hacker

Jonathan S. Hacker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200083178
    Abstract: A semiconductor device assembly that includes a substrate having a first side and a second side, the first side having at least one dummy pad and at least one electrical pad. The semiconductor device assembly includes a first semiconductor device having a first side and a second side and at least one electrical pillar extending from the second side. The electrical pillar is connected to the electrical pad via solder to form an electrical interconnect. The semiconductor device assembly includes at least one dummy pillar extending from the second side of the first semiconductor device and a liquid positioned between an end of the dummy pillar and the dummy pad. The surface tension of the liquid pulls the dummy pillar towards the dummy pad. The surface tension may reduce or minimize a warpage of the semiconductor device assembly and/or align the dummy pillar and the dummy pad.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Bret K. Street, Wei Zhou, Christopher J. Gambee, Jonathan S. Hacker, Shijian Luo
  • Publication number: 20190385967
    Abstract: A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies spaced apart from one another. The first semiconductor die has a major surface with non-overlapping first and second regions. The semiconductor die assembly further includes an array of first pillars extending heightwise from the first region of the major surface of the first semiconductor die toward the second semiconductor die. Similarly, the semiconductor die assembly includes an array of second pillars extending heightwise from the second region of the major surface of the first semiconductor die toward the second semiconductor die. The first and second pillars have different lateral densities and different average widths. The latter difference at least partially offsets an effect of the former difference on relative metal deposition rates of an electrochemical plating process used to form the first and second pillars.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 19, 2019
    Inventor: Jonathan S. Hacker
  • Publication number: 20190341378
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Patent number: 10446431
    Abstract: Systems and methods for debonding a carrier from a semiconductor device are disclosed herein. In one embodiment, a system for debonding a carrier from a semiconductor device includes a support member positioned to carry the semiconductor device and a fluid delivery device having an exit positioned to direct a fluid toward an adhesive layer between the carrier and the semiconductor device. The fluid directed from the fluid delivery device initiates debonding of the carrier from the semiconductor device by weakening or loosening at least a portion of the adhesive. The system further includes a liftoff device configured to releasably engage the carrier and apply a debonding force to the carrier to complete debonding of the carrier from the semiconductor device.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Jonathan S. Hacker
  • Publication number: 20190311918
    Abstract: A semiconductor device includes a substrate including traces, wherein the traces protrude above a top surface of the substrate; a prefill material over the substrate and between the traces, wherein the prefill material directly contacts peripheral surfaces of the traces; a die attached over the substrate; and a wafer-level underfill between the prefill material and the die.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 10, 2019
    Inventors: Shijian Luo, Jonathan S. Hacker
  • Patent number: 10403618
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Patent number: 10396052
    Abstract: A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies spaced apart from one another. The first semiconductor die has a major surface with non-overlapping first and second regions. The semiconductor die assembly further includes an array of first pillars extending heightwise from the first region of the major surface of the first semiconductor die toward the second semiconductor die. Similarly, the semiconductor die assembly includes an array of second pillars extending heightwise from the second region of the major surface of the first semiconductor die toward the second semiconductor die. The first and second pillars have different lateral densities and different average widths. The latter difference at least partially offsets an effect of the former difference on relative metal deposition rates of an electrochemical plating process used to form the first and second pillars.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: August 27, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Jonathan S. Hacker
  • Publication number: 20190198377
    Abstract: Systems and methods for debonding a carrier from a semiconductor device are disclosed herein. In one embodiment, a system for debonding a carrier from a semiconductor device includes a support member positioned to carry the semiconductor device and a fluid delivery device having an exit positioned to direct a fluid toward an adhesive layer between the carrier and the semiconductor device. The fluid directed from the fluid delivery device initiates debonding of the carrier from the semiconductor device by weakening or loosening at least a portion of the adhesive. The system further includes a liftoff device configured to releasably engage the carrier and apply a debonding force to the carrier to complete debonding of the carrier from the semiconductor device.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 27, 2019
    Inventor: Jonathan S. Hacker
  • Publication number: 20190189576
    Abstract: Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 20, 2019
    Inventors: Mayukhee Das, Jonathan S. Hacker, Christopher J. Gambee, Chandra S. Tiwari
  • Publication number: 20190178933
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3DI structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Publication number: 20190157111
    Abstract: A semiconductor device includes a substrate including traces, wherein the traces protrude above a top surface of the substrate; a prefill material over the substrate and between the traces, wherein the prefill material directly contacts peripheral surfaces of the traces; a die attached over the substrate; and a wafer-level underfill between the prefill material and the die.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Shijian Luo, Jonathan S. Hacker
  • Publication number: 20190157112
    Abstract: A semiconductor device includes a substrate including traces, wherein the traces protrude above a top surface of the substrate; a prefill material over the substrate and between the traces, wherein the prefill material directly contacts peripheral surfaces of the traces; a die attached over the substrate; and a wafer-level underfill between the prefill material and the die.
    Type: Application
    Filed: June 14, 2018
    Publication date: May 23, 2019
    Inventors: Shijian Luo, Jonathan S. Hacker
  • Patent number: 10262961
    Abstract: Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: April 16, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Mayukhee Das, Jonathan S. Hacker, Christopher J. Gambee, Chandra S. Tiwari
  • Publication number: 20190088637
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20190051623
    Abstract: Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad.
    Type: Application
    Filed: May 17, 2018
    Publication date: February 14, 2019
    Inventors: Mayukhee Das, Jonathan S. Hacker, Christopher J. Gambee, Chandra S. Tiwari
  • Patent number: 10103134
    Abstract: Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: October 16, 2018
    Inventors: Wei Zhou, Aibin Yu, Zhaohui Ma, Sony Varghese, Jonathan S. Hacker, Bret K. Street, Shijian Luo
  • Publication number: 20180174993
    Abstract: A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies spaced apart from one another. The first semiconductor die has a major surface with non-overlapping first and second regions. The semiconductor die assembly further includes an array of first pillars extending heightwise from the first region of the major surface of the first semiconductor die toward the second semiconductor die. Similarly, the semiconductor die assembly includes an array of second pillars extending heightwise from the second region of the major surface of the first semiconductor die toward the second semiconductor die. The first and second pillars have different lateral densities and different average widths. The latter difference at least partially offsets an effect of the former difference on relative metal deposition rates of an electrochemical plating process used to form the first and second pillars.
    Type: Application
    Filed: January 16, 2018
    Publication date: June 21, 2018
    Inventor: Jonathan S. Hacker
  • Patent number: 10002840
    Abstract: Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad, and a conductive interconnect can extend from the conductive structure.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 19, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Mayukhee Das, Jonathan S. Hacker, Christopher J. Gambee, Chandra S. Tiwari
  • Patent number: 9905527
    Abstract: A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies spaced apart from one another. The first semiconductor die has a major surface with non-overlapping first and second regions. The semiconductor die assembly further includes an array of first pillars extending heightwise from the first region of the major surface of the first semiconductor die toward the second semiconductor die. Similarly, the semiconductor die assembly includes an array of second pillars extending heightwise from the second region of the major surface of the first semiconductor die toward the second semiconductor die. The first and second pillars have different lateral densities and different average widths. The latter difference at least partially offsets an effect of the former difference on relative metal deposition rates of an electrochemical plating process used to form the first and second pillars.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: February 27, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Jonathan S. Hacker
  • Publication number: 20180033781
    Abstract: Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Wei Zhou, Aibin Yu, Zhaohui Ma, Sony Varghese, Jonathan S. Hacker, Bret K. Street, Shijian Luo