Patents by Inventor Jonathan Schultz

Jonathan Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180221865
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 9964515
    Abstract: An apparatus comprising a chemical field effect transistor array in a circuit-supporting substrate is disclosed. The transistor array has disposed on its surface an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid. The transistor array has a pitch of 10 ?m or less and a sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 8, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. Rothberg, James Bustillo, Mark James Milgrew, Jonathan Schultz, David Marran, Todd Rearick, Kim L. Johnson
  • Patent number: 9937494
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: April 10, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 9901887
    Abstract: An automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermal subsystem, in automated fashion. The thermal subsystem can treat an inverse emulsion passed therethrough. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 27, 2018
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Thwar, Todd Roswech, John Andrew Sheridan
  • Patent number: 9890424
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: February 13, 2018
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, Todd Roswech, Jon A. Hoshizaki, Albert L. Carrillo, James A. Ball
  • Patent number: 9776146
    Abstract: An automated on-touch template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, an emulsion PCR (ePCR) thermocycling plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermocycling subsystem, in automated fashion. The ePCR subsystem can continuously thermocycle an inverse emulsion passed therethrough and includes static temperature zones and a consumable thermocycling plate. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 3, 2017
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Krishnan Thwar, Todd Roswech
  • Patent number: 9714719
    Abstract: A removable independent steam jacket for a bottom outlet valve of a railroad tank car able to connect to an existing bottom outlet valve, with or without an integral steam jacket, in a field environment without having to take the tank car in for repairs having a partially annular hollow base with a rectangular cross-section and a plurality of pipes connected to the base extending away from the bottom of the base. The removable steam jacket also has a plurality of mounting brackets connected to the bottom the base for installing and removing it from the bottom outlet valve.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: July 25, 2017
    Assignee: Union Tank Car Company
    Inventors: Peter J. Douglas, Gary C. Walter, Joe Perez, Jonathan Schultz, Nathan Chilton, Keith Peltason
  • Publication number: 20170191571
    Abstract: A valve for regulating fluid flow includes a housing base defining a lower cavity and comprising a pinch structure within the lower cavity, a gas inlet providing external access to the lower cavity, a base fluid inlet, and a base fluid outlet. A housing cover defines an upper cavity and comprises a cover fluid inlet and a cover fluid outlet. The cover fluid inlet is in fluidic communication with the base fluid outlet between the upper cavity and the lower cavity, and the cover fluid outlet provides external access from the upper cavity. A diaphragm is disposed between the housing base and the housing cover. A pinch plate is disposed in the lower cavity and comprises a pinch point disposed opposite the pinch structure. A pinch tube is in fluidic communication between the base fluid inlet and the base fluid outlet in the lower cavity.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 6, 2017
    Inventor: Jonathan Schultz
  • Publication number: 20170145497
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Application
    Filed: September 26, 2016
    Publication date: May 25, 2017
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ, Kim L. JOHNSON, James BUSTILLO, John LEAMON, Jonathan SCHULTZ
  • Publication number: 20170121766
    Abstract: A method of sequencing a polynucleotide strand can include providing the polynucleotide strand with a primer annealed thereto and a polymerase operably bound to the polynucleotide strand; successively exposing the polynucleotide strand to the flow of four different dNTPs according to a first predetermined ordering; and successively exposing the polynucleotide strand to the flow of four different dNTPs according to a second predetermined ordering, wherein the second predetermined ordering is different from the first predetermined ordering.
    Type: Application
    Filed: January 12, 2017
    Publication date: May 4, 2017
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan SCHULTZ, John DAVIDSON
  • Publication number: 20170089479
    Abstract: A removable independent steam jacket for a bottom outlet valve of a railroad tank car able to connect to an existing bottom outlet valve, with or without an integral steam jacket, in a field environment without having to take the tank car in for repairs having a partially annular hollow base with a rectangular cross-section and a plurality of pipes connected to the base extending away from the bottom of the base. The removable steam jacket also has a plurality of mounting brackets connected to the bottom the base for installing and removing it from the bottom outlet valve.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 30, 2017
    Inventors: Peter J. Douglas, Gary C. Walter, Joe Perez, Jonathan Schultz, Nathan Chilton, Keith Peltason
  • Patent number: 9605308
    Abstract: A method for sequencing a polynucleotide strand by using sequencing-by-synthesis techniques. To address the problem of incomplete extension (IE) and/or carry forward (CF) errors that can occur in sequencing-by-synthesis reactions, an alternative flow ordering of dNTPs is used. In contrast to conventional flow orderings, the dNTPs are flowed in an ordering that is not a continuous repeat of an ordering of the four different dNTPs. This alternate flow ordering may reduce the loss of phasic synchrony in the population of template polynucleotide strands that result from IE and/or CF errors.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: March 28, 2017
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, John Davidson
  • Publication number: 20170066642
    Abstract: A fluidic interconnect includes a first interface including a liquid port, a gas port, and a cradle; a second interface including a liquid port, a gas port, and a swing bar to engage the cradle, a weight of a container attached to one of the first or second interfaces to drive the liquid port of the first interface into connection with the liquid port of the second interface and the gas port of the first interface into connection with the gas port of the second interface.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 9, 2017
    Inventors: Todd Roswech, Jonathan SCHULTZ, Chun HO
  • Publication number: 20170056881
    Abstract: The invention provides a passive fluidics circuit for directing different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit are controlled by the states of upstream valves (e.g. opened or closed), differential fluid pressures at circuit inlets or upstream reservoirs, flow path resistances, and the like. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes is prevented by the flow of the selected inlet fluid, a portion of which sweeps by the inlets of unselected fluids and exits the fluidics circuit by waste ports, thereby creating a barrier against undesired intermixing with the outlet flow through leakage or diffusion. The invention is particularly advantageous in apparatus for performing sensitive multistep reactions, such as pH-based DNA sequencing reactions.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Jonathan Schultz, David Marran
  • Patent number: 9579654
    Abstract: A valve for regulating fluid flow includes a housing base defining a lower cavity and comprising a pinch structure within the lower cavity, a gas inlet providing external access to the lower cavity, a base fluid inlet, and a base fluid outlet. A housing cover defines an upper cavity and comprises a cover fluid inlet and a cover fluid outlet. The cover fluid inlet is in fluidic communication with the base fluid outlet between the upper cavity and the lower cavity, and the cover fluid outlet provides external access from the upper cavity. A diaphragm is disposed between the housing base and the housing cover. A pinch plate is disposed in the lower cavity and comprises a pinch point disposed opposite the pinch structure. A pinch tube is in fluidic communication between the base fluid inlet and the base fluid outlet in the lower cavity.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 28, 2017
    Assignee: Life Technologies Corporation
    Inventor: Jonathan Schultz
  • Publication number: 20170044602
    Abstract: A system and machine readable medium for nucleic acid sequencing includes disposing template polynucleotide strands in defined spaces disposed on a sensor array, at least some of the template polynucleotide strands having a sequencing primer and a polymerase operably bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed according to a predetermined ordering; and determining, for each of the series of flows of nucleotide species, how many nucleotide incorporations occurred for that particular flow to determine a predicted sequence of nucleotides corresponding to the template polynucleotide strands, wherein the predetermined ordering (a) is not a series of consecutive repetitions of a 4-flow permutation of four different nucleotide species, (b) is not specifically tailored to a particular combination of a particular template polynucleotide strand to be sequenced and a particular sequencing primer to be used, and (c) comprises a phase-protecting flow orde
    Type: Application
    Filed: August 12, 2016
    Publication date: February 16, 2017
    Applicant: Life Technologies Corporation
    Inventors: Earl HUBBELL, Jonathan SCHULTZ
  • Patent number: 9550183
    Abstract: The invention provides a passive fluidics circuit for directing different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit are controlled by the states of upstream valves (e.g. opened or closed), differential fluid pressures at circuit inlets or upstream reservoirs, flow path resistances, and the like. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes is prevented by the flow of the selected inlet fluid, a portion of which sweeps by the inlets of unselected fluids and exits the fluidics circuit by waste ports, thereby creating a barrier against undesired intermixing with the outlet flow through leakage or diffusion. The invention is particularly advantageous in apparatus for performing sensitive multistep reactions, such as pH-based DNA sequencing reactions.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 24, 2017
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, David Marran
  • Publication number: 20170014784
    Abstract: An automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermal subsystem, in automated fashion. The thermal subsystem can treat an inverse emulsion passed therethrough. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Jonathan SCHULTZ, John Nobile, Brian Reed, Prasanna Thwar, Todd Roswech, John Andrew Sheridan
  • Patent number: 9458485
    Abstract: An automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermal subsystem, in automated fashion. The thermal subsystem can treat an inverse emulsion passed therethrough. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: October 4, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Krishnan Thwar, Todd Roswech, John Andrew Sheridan
  • Patent number: 9458502
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 4, 2016
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo, John Leamon, Jonathan Schultz