Patents by Inventor Jonathan Schultz

Jonathan Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150160154
    Abstract: The invention is directed to apparatus and chips comprising a large scale chemical field effect transistor arrays that include an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid for analysis. In one aspect such transistor arrays have a pitch of 10 ?m or less and each sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region.
    Type: Application
    Filed: January 21, 2015
    Publication date: June 11, 2015
    Inventors: Jonathan M. ROTHBERG, James Bustillo, Mark James Milgrew, Jonathan Schultz, David Marran, Todd Rearick, Kim L. Johnson
  • Publication number: 20150126378
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Application
    Filed: October 22, 2014
    Publication date: May 7, 2015
    Inventors: JONATHAN M. ROTHBERG, WOLFGANG HINZ, KIM L. JOHNSON, JAMES BUSTILLO, JOHN LEAMON, JONATHAN SCHULTZ
  • Patent number: 9017993
    Abstract: An automated on-touch template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, an emulsion PCR (ePCR) thermocycling plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermocycling subsystem, in automated fashion. The ePCR subsystem can continuously thermocycle an inverse emulsion passed therethrough and includes static temperature zones and a consumable thermocycling plate. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Thwar, Todd Roswech
  • Patent number: 8936763
    Abstract: The invention is directed to apparatus and chips comprising a large scale chemical field effect transistor arrays that include an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid for analysis. In one aspect such transistor arrays have a pitch of 10 ?m or less and each sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 20, 2015
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, James Bustillo, Mark Milgrew, Jonathan Schultz, David Marran, Todd Rearick, Kim Johnson
  • Patent number: 8906617
    Abstract: The invention provides apparatuses and methods of use thereof for sequencing nucleic acids subjected to a force, and thus considered under tension. The methods may employ but are not dependent upon incorporation of extrinsically detectably labeled nucleotides.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 9, 2014
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, John H. Leamon, John F. Davidson, Antoine M. Van Oijen, Wolfgang Hinz, Melville Davey, Bradley Hann, Jonathan Schultz
  • Publication number: 20140336063
    Abstract: In one implementation, a method is described. The method includes determining an operational characteristic of sensors of a sensor array. The method further includes selecting a group of sensors in the array based on the operational characteristic of sensors in the group. The method further includes enabling readout of the sensors in the selected group. The method further includes receiving output signals from the enabled sensors, the output signals indicating chemical reactions occurring proximate to the sensors of the sensor array.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Todd REARICK, Mark James MILGREW, Jonathan SCHULTZ, Chris PAPALIAS, Kim L. JOHNSON
  • Patent number: 8846378
    Abstract: Fluidic circuits and methods of using same are provided herein. In some embodiments, the circuit can direct different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit can be controlled, for example, by the states of upstream valves, differential fluid pressures at circuit inlets or upstream reservoirs, or flow path resistances. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes can be prevented by the flow of the selected inlet fluid, a portion of which can sweep by the inlets of unselected fluids and exit the fluidics circuit by waste ports.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: September 30, 2014
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, David Marran
  • Publication number: 20140271402
    Abstract: The invention provides a passive fluidics circuit for directing different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit are controlled by the states of upstream valves (e.g. opened or closed), differential fluid pressures at circuit inlets or upstream reservoirs, flow path resistances, and the like. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes is prevented by the flow of the selected inlet fluid, a portion of which sweeps by the inlets of unselected fluids and exits the fluidics circuit by waste ports, thereby creating a barrier against undesired intermixing with the outlet flow through leakage or diffusion. The invention is particularly advantageous in apparatus for performing sensitive multistep reactions, such as pH-based DNA sequencing reactions.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan SCHULTZ, David MARRAN
  • Publication number: 20140261736
    Abstract: The invention provides a passive fluidics circuit for directing different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit are controlled by the states of upstream valves (e.g. opened or closed), differential fluid pressures at circuit inlets or upstream reservoirs, flow path resistances, and the like. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes is prevented by the flow of the selected inlet fluid, a portion of which sweeps by the inlets of unselected fluids and exits the fluidics circuit by waste ports, thereby creating a barrier against undesired intermixing with the outlet flow through leakage or diffusion. The invention is particularly advantageous in apparatus for performing sensitive multistep reactions, such as pH-based DNA sequencing reactions.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan SCHULTZ, David MARRAN
  • Patent number: 8746984
    Abstract: A mechanism and method for locking a bearing to a shaft includes a split sleeve and a receptive flange adapted to be fixed to the bearing. A positioning flange is coupled to the split sleeve. A screw extends through the positioning flange and threadingly engages the receptive flange. Rotation of the screw in a first direction axially drives the sleeve into engagement with the bearing to collapse the split sleeve into engagement with the shaft.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: June 10, 2014
    Assignee: Emerson Power Transmission Corporation
    Inventors: Daniel Putt, Jonathan Schultz
  • Patent number: 8673627
    Abstract: The invention is directed to apparatus and methods for delivering multiple reagents to, and monitoring, a plurality of analytical reactions carried out on a large-scale array of electronic sensors underminimal noise conditions. In one aspect, the invention provides method of improving signal-to-noise ratios of output signals from the electronic sensors sensing analytes or reaction byproducts by subtracting an average of output signals measured from neighboring sensors where analyte or reaction byproducts are absent. In other aspects, the invention provides an array of electronic sensors integrated with a microwell array for confining analytes and/or particles for analytical reactions and a method for identifying microwells containing analytes and/or particles by passing a sensor-active reagent over the array and correlating sensor response times to the presence or absence of analytes or particles.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: March 18, 2014
    Assignee: Life Technologies Corporation
    Inventors: John Nobile, Thomas Roth, Todd Rearick, Jonathan Schultz, Jonathan Rothberg, David Marran
  • Publication number: 20140031238
    Abstract: A method for sequencing a polynucleotide strand by using sequencing-by-synthesis techniques. To address the problem of incomplete extension (IE) and/or carry forward (CF) errors that can occur in sequencing-by-synthesis reactions, an alternative flow ordering of dNTPs is used. In contrast to conventional flow orderings, the dNTPs are flowed in an ordering that is not a continuous repeat of an ordering of the four different dNTPs. This alternate flow ordering may reduce the loss of phasic synchrony in the population of template polynucleotide strands that result from IE and/or CF errors.
    Type: Application
    Filed: April 9, 2013
    Publication date: January 30, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan SCHULTZ, John DAVIDSON
  • Publication number: 20130324421
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 5, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ, Kim L. JOHNSON, James BUSTILLO, John LEAMON, Jonathan SCHULTZ
  • Patent number: 8592153
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Life Technologies Corporation
    Inventors: James Bustillo, Jonathan Schultz, Todd Rearick, Mark Milgrew
  • Publication number: 20130302932
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: September 5, 2012
    Publication date: November 14, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: James Bustillo, Jonathan SCHULTZ, Todd Rearick, Mark Milgrew
  • Publication number: 20130288873
    Abstract: An apparatus includes a robotic system providing movement in three orthogonal directions to an arm operable to receive a pipette tip and to facilitate movement of fluid into and out of the pipette tip. In addition, the apparatus can include a tray for receiving pipette tips, receptacles for receiving tubes, an apparatus for forming an emulsion, a device for forming particles that include copies of the polynucleotide, a device for enriching the particles and an apparatus for loading such particles onto a sensor array. The apparatus can further include receptacles for holding containers of reagent solutions. Optionally, the robot can include a gripper arm in addition to the pipette receiving arm.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 31, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kristopher BARBEE, Ryan Jones, Sean McCusker, Maximilan Carpino, John Leamon, Jonathan Schultz, Jon A. Hoshizaki
  • Publication number: 20130288904
    Abstract: A method for nucleic acid sequencing includes: disposing a plurality of template polynucleotide strands, sequencing primers, and polymerases in a plurality of defined spaces of a sensor array; exposing template polynucleotide strands to a series of flows of nucleotide species, the series comprising a sequence of random flows; and obtaining, for each of the series of flows of nucleotide species, a signal indicative of how many nucleotide incorporations occurred for that particular flow to determine a predicted sequence of nucleotides corresponding to the template polynucleotide strands.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 31, 2013
    Inventors: Earl HUBBELL, Jonathan SCHULTZ
  • Publication number: 20130280702
    Abstract: A method for sequencing a polynucleotide strand by using sequencing-by-synthesis techniques. To address the problem of incomplete extension (IE) and/or carry forward (CF) errors that can occur in sequencing-by-synthesis reactions, an alternative flow ordering of dNTPs is used. In contrast to conventional flow orderings, the dNTPs are flowed in an ordering that is not a continuous repeat of an ordering of the four different dNTPs. This alternate flow ordering may reduce the loss of phasic synchrony in the population of template polynucleotide strands that result from IE and/or CF errors.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 24, 2013
    Inventors: Jonathan SCHULTZ, John DAVIDSON
  • Patent number: 8546128
    Abstract: The invention provides a passive fluidics circuit for directing different fluids to a common volume, such as a reaction chamber or flow cell, without intermixing or cross contamination. The direction and rate of flow through junctions, nodes and passages of the fluidics circuit are controlled by the states of upstream valves (e.g. opened or closed), differential fluid pressures at circuit inlets or upstream reservoirs, flow path resistances, and the like. Free diffusion or leakage of fluids from unselected inlets into the common outlet or other inlets at junctions or nodes is prevented by the flow of the selected inlet fluid, a portion of which sweeps by the inlets of unselected fluids and exits the fluidics circuit by waste ports, thereby creating a barrier against undesired intermixing with the outlet flow through leakage or diffusion. The invention is particularly advantageous in apparatus for performing sensitive multistep reactions, such as pH-based DNA sequencing reactions.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: October 1, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, David Marran
  • Patent number: 8524057
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 3, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James M. Bustillo, John H. Leamon, Jonathan Schultz