Patents by Inventor Jong-Ho Yun

Jong-Ho Yun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7846796
    Abstract: A semiconductor device includes a plurality of channel structures on a semiconductor substrate. A bit line groove having opposing sidewalls is defined between sidewalls of adjacent ones of the plurality of channel structures.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Yun, Byung-Hee Kim, Dae-Yong Kim, Hyun-Su Kim, Eun-Ji Jung, Eun-Ok Lee
  • Patent number: 7842600
    Abstract: Methods of forming an interlayer dielectric having an air gap are provided including forming a first insulating layer on a semiconductor substrate. The first insulating layer defines a trench. A metal wire is formed in the trench such that the metal wire is recessed beneath an upper surface of the first insulating layer. A metal layer is formed on the metal wire, wherein the metal layer includes a capping layer portion filling the recess, a upper portion formed on the capping layer portion, and an overhang portion formed on the portion of the first insulating layer adjacent to the trench protruding sideward from the upper portion. The first insulating layer is removed and a second insulating layer is formed on the semiconductor substrate to cover the metal layer, whereby an air gap is formed below the overhang portion of the metal layer. A portion of the second insulating layer is removed to expose the upper portion of the metal layer. The upper portion and the overhang portion of the metal layer are removed.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-ho Yun, Jong-Myeong Lee, Gil-heyun Choi
  • Patent number: 7833847
    Abstract: There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Publication number: 20100255676
    Abstract: Provided are methods of manufacturing semiconductor devices. The methods may include forming a first insulation layer on a semiconductor substrate, forming a groove by selectively etching the first insulation layer, filling the groove with a copper-based conductive layer, depositing a cobalt-based capping layer on the copper-based conductive layer by electroless plating, and cleansing the first insulation layer and the cobalt-based capping layer using a basic cleansing solution.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Inventors: Youngseok Kim, Jong-ho Yun, Kwang-jin Moon, Gil-heyun Choi, Jong-myeong Lee, Zung-sun Choi, Hye-Kyung Jung
  • Publication number: 20100237423
    Abstract: A semiconductor device includes a plurality of channel structures on a semiconductor substrate. A bit line groove having opposing sidewalls is defined between sidewalls of adjacent ones of the plurality of channel structures.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Inventors: Jong-Ho Yun, Byung-Hee Kim, Dae-Yong Kim, Hyun-Su Kim, Eun-Ji Jung, Eun-Ok Lee
  • Publication number: 20100193902
    Abstract: Provided is a semiconductor device including a fuse, in which a insulating layer surrounding the fuse or metal wiring is prevented from being damaged due to the cut of a fuse, which can occur when a repair process is performed. The semiconductor device includes a conductive line formed on a semiconductor layer, a protective layer formed on the conductive line, one or more fuses that are electrically connected to the conductive line, and a fuse protective layer formed on the one or more fuses, and spaced apart from the protective layer.
    Type: Application
    Filed: July 14, 2009
    Publication date: August 5, 2010
    Inventors: Seung-woo SHIN, Byung-Iyul Park, Jong-myeong Lee, Gil-heyun Choi, Jong-ho Yun
  • Patent number: 7749840
    Abstract: A method of forming a buried interconnection includes removing a semiconductor substrate to form a groove in the semiconductor substrate. A metal layer is formed on inner walls of the groove using an electroless deposition technique. A silicidation process is applied to the substrate having the metal layer, thereby forming a metal silicide layer on the inner walls of the groove.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Yun, Byung-Hee Kim, Dae-Yong Kim, Hyun-Su Kim, Eun-Ji Jung, Eun-Ok Lee
  • Publication number: 20100096753
    Abstract: A microelectronic device structure as provided herein includes a conductive via having a body portion extending into a substrate from an upper surface thereof and a connecting portion laterally extending along the upper surface of the substrate. The connecting portion includes a recess therein opposite the upper surface of the substrate. The recess is confined within the connecting portion of the conductive via and does not extend beneath the upper surface of the substrate. A microelectronic device structure is also provided that includes a conductive via having a body portion extending into a substrate from an upper surface thereof and an end portion below the upper surface of the substrate. The end portion has a greater width than that of the body portion. A solder wettable layer is provided on the end portion. The solder wettable layer is formed of a material having a greater wettability with a conductive metal than that of the end portion of conductive via.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 22, 2010
    Inventors: Son-Kwan Hwang, Keum-Hee Ma, Seung-Woo Shin, Min-Seung Yoon, Jong-Ho Yun, Ui-Hyoung Lee
  • Patent number: 7687331
    Abstract: A stacked semiconductor device comprises a lower transistor formed on a semiconductor substrate, a lower interlevel insulation film formed on the semiconductor substrate over the lower transistor, an upper transistor formed on the lower interlayer insulation film over the lower transistor, and an upper interlevel insulation film formed on the lower interlevel insulation film over the upper transistor. The stacked semiconductor device further comprises a contact plug connected between a drain or source region of the lower transistor and a source or drain region of the upper transistor, and an extension layer connected to a lateral face of the source or drain region of the upper transistor to enlarge an area of contact between the source or drain region of the upper transistor and a side of the contact plug.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Patent number: 7666786
    Abstract: A semiconductor device is fabricated by forming a gate electrode structure, comprising a gate oxide layer pattern, a polysilicon layer pattern, and sidewall spacers on a silicon substrate, forming source/drain regions on both sides of the gate electrode structure in the silicon substrate, depositing a physical vapor deposition (PVD) cobalt layer on the gate electrode structure using PVD, depositing a chemical vapor deposition (CVD) cobalt layer on the PVD cobalt layer using CVD, annealing the silicon substrate to react the PVD and CVD cobalt layers with polysilicon on an upper surface of the gate electrode structure, stripping at least a portion of the PVD cobalt layer and the CVD cobalt layer that has not reacted, and annealing the silicon substrate after stripping the at least the portion of the PVD cobalt layer and the CVD cobalt layer.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: February 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-ho Yun, Gil-heyun Choi, Seong-hwee Cheong, Sug-woo Jung, Hyun-su Kim, Woong-hee Sohn
  • Patent number: 7662707
    Abstract: Methods of forming metal silicide layers in a semiconductor device are provided in which a first metal silicide layer may be formed on a substrate, where the first metal silicide layer comprises a plurality of fragments of a metal silicide that are separated by one or more gaps. A conductive material is selectively deposited into at least some of the gaps in the first metal silicide layer in order to electrically connect at least some of the plurality of fragments.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: February 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sug-Woo Jung, Gil-Heyun Choi, Jong-Ho Yun, Hyun-Su Kim, Eun-Ji Jung
  • Patent number: 7638433
    Abstract: A method of fabricating a semiconductor device includes forming a preliminary gate pattern on a semiconductor substrate. The preliminary gate pattern includes a gate oxide pattern, a conductive pattern, and a sacrificial insulating pattern. The method further includes forming spacers on opposite sidewalls of the preliminary gate pattern, forming an interlayer dielectric pattern to expose the sacrificial insulating pattern, removing the sacrificial insulating pattern to form an opening to expose the conductive pattern, transforming the conductive pattern into a metal silicide layer and forming a metal barrier pattern along an inner profile of the opening and a metal conductive pattern to fill the opening including the metal barrier pattern. The metal silicide layer and the metal conductive pattern constitute a gate electrode.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Yun, Gil-Heyun Choi, Byung-Hee Kim, Hyun-Su Kim, Eun-Ok Lee
  • Publication number: 20090298282
    Abstract: Methods of forming an interlayer dielectric having an air gap are provided including forming a first insulating layer on a semiconductor substrate. The first insulating layer defines a trench. A metal wire is formed in the trench such that the metal wire is recessed beneath an upper surface of the first insulating layer. A metal layer is formed on the metal wire, wherein the metal layer includes a capping layer portion filling the recess, a upper portion formed on the capping layer portion, and an overhang portion formed on the portion of the first insulating layer adjacent to the trench protruding sideward from the upper portion. The first insulating layer is removed and a second insulating layer is formed on the semiconductor substrate to cover the metal layer, whereby an air gap is formed below the overhang portion of the metal layer. A portion of the second insulating layer is removed to expose the upper portion of the metal layer. The upper portion and the overhang portion of the metal layer are removed.
    Type: Application
    Filed: February 3, 2009
    Publication date: December 3, 2009
    Inventors: Jong-Ho Yun, Jong-Myeong Lee, Gil-heyun Choi
  • Publication number: 20090280605
    Abstract: There is provided a method of forming a semiconductor device having stacked transistors. When farming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 12, 2009
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Patent number: 7579225
    Abstract: There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Patent number: 7569483
    Abstract: Methods of forming metal silicide layers include a convection-based annealing step to convert a metal layer into a metal silicide layer. These methods may include forming a silicon layer on a substrate and forming a metal layer (e.g., nickel layer) in direct contact with the silicon layer. A step is then performed to convert at least a portion of the metal layer into a metal silicide layer. This conversion step is includes exposing the metal layer to an inert heat transferring gas (e.g., argon, nitrogen) in a convection or conduction apparatus.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 4, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sug-Woo Jung, Gil-Heyun Choi, Jong-Ho Yun, Kwan-Jong Roh, Eun-Ji Jung, Hyun-Su Kim
  • Patent number: 7560331
    Abstract: A gate is silicided through its sides while limiting silicidation through the top of the gate. A blocking layer may be formed over the gate layer, and the sidewalls of the gate layer are exposed. A layer of metal is formed on the sidewalls of the gate and thermally treated to silicide the gate layer. The sidewalls of the gate maybe exposed through an etching process in which a silicide layer formed over the blocking layer is used as an etch mask.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: July 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Su Kim, Jong-Ho Yun, Sang-Woo Lee, Seok-Woo Jung, Eun-Ji Jung
  • Patent number: 7531459
    Abstract: Methods of forming a metal salicide layer can include forming a metal layer on a substrate and forming a metal silicide layer on the metal layer using a first thermal process at a first temperature. Then a second process is performed, in-situ with the first thermal process, on the metal layer at a second temperature that is less than the first temperature.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 12, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sug-woo Jung, Gil-heyun Choi, Byung-hee Kim, Jong-ho Yun, Hyun-su Kim, Eun-ji Jung
  • Publication number: 20090004789
    Abstract: There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
    Type: Application
    Filed: September 4, 2008
    Publication date: January 1, 2009
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Publication number: 20080315312
    Abstract: A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern.
    Type: Application
    Filed: September 4, 2008
    Publication date: December 25, 2008
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung