Patents by Inventor Jong-Kwon Lee

Jong-Kwon Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7760419
    Abstract: An configurationally simplified electrophoretic display device is disclosed. The electrophoretic display device includes a substrate including a plurality of pixels, first pixel electrodes on the substrate, second pixel electrodes to be slit on each first electrode, and an electrophoretic film disposed on the second pixel electrodes. The second pixel electrodes are slit in different widths according to a plurality of sub-pixels.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 20, 2010
    Assignee: LG. Display Co., Ltd.
    Inventor: Jong Kwon Lee
  • Publication number: 20100164903
    Abstract: An electrophoresis display device adapted to prevent sensing errors and to reduce electric power consumption is disclosed. The electrophoresis display device includes a thin film transistor array substrate and an ink film. The thin film transistor array substrate includes a sensor configured to generate a sensing signal, and an output transistor configured to be connected to the sensor and to control the output of the sensing signal. The ink film includes a common electrode and an ink layer, which are formed on one side surface of a base film, and a floating electrode formed on the other side surface of the base film. The output transistor outputs the sensing signal when a touch current is generated on the floating electrode. The electrophoresis display device only outputs the sensing signal when a substantial touch occurs. Therefore, the electrophoresis display device can prevent sensing errors and reduce electric power consumption.
    Type: Application
    Filed: December 2, 2009
    Publication date: July 1, 2010
    Inventors: Jong Kwon Lee, Seung Seok Nam, Sang Soo Kim
  • Publication number: 20100156849
    Abstract: The present disclosure relates to a touch-type electrophoretic display device using a photo sensor, and the construction thereof may be configured by including a display substrate including a switching element connected to a gate line and a data line intersected with the gate line, a pixel electrode electrically connected to the switching element, and a first and a second photo sensor elements having a different channel width and length, the first and the second photo sensor elements being connected to the gate line and the data line for sensing an amount of light; and an electrophoretic film including charged particles, the electrophoretic film being coupled to the display substrate.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 24, 2010
    Inventor: Jong-Kwon Lee
  • Publication number: 20100085628
    Abstract: An configurationally simplified electrophoretic display device is disclosed. The electrophoretic display device includes a substrate including a plurality of pixels, first pixel electrodes on the substrate, second pixel electrodes to be slit on each first electrode, and an electrophoretic film disposed on the second pixel electrodes. The second pixel electrodes are slit in different widths according to a plurality of sub-pixels.
    Type: Application
    Filed: December 18, 2008
    Publication date: April 8, 2010
    Inventor: Jong Kwon Lee
  • Publication number: 20100073279
    Abstract: A method of fabricating an electrophoretic display device includes forming a gate electrode, a gate line, a data line and a thin film transistor having a semiconductor layer, a source electrode and a drain electrode on a substrate having a display region, the thin film transistor connected to the gate and data lines; forming a gate insulating layer on an entire surface of the substrate including the gate electrode and the gate line; forming a passivation layer over the thin film transistor; forming a pixel electrode connected to the drain electrode of the thin film transistor; forming an align; attaching an electrophoresis film including an adhesive layer, an ink layer having a charged particle, a common electrode and a base film onto the pixel electrode, the ink layer disposed between the adhesive layer and the base film, the adhesive layer being on the pixel electrode; forming a color filter layer on the base film using the align mark for aligning the color filter layer with the pixel regions, the color fil
    Type: Application
    Filed: December 16, 2008
    Publication date: March 25, 2010
    Inventors: Oh-Nam Kwon, Jong-Kwon Lee
  • Patent number: 7179505
    Abstract: The embodiments of the invention relate to a MoSi2-SiC nanocomposite coating layer formed on surfaces of refractory metals such as Mo, Nb, Ta, W and their alloys. The MoSi2-SiC nanocomposite coating layer is manufactured by forming a molybdenum carbide (MoC and MoC2) coating layers on the surfaces of the substrates at high temperature, and the subsequent vapor-deposition of Si. The MoSi2-SiC nanocomposite coating layer has a microstructure in which SiC particles are mostly located on the equiaxed MoSi2 grain boundary. The MoSi2-SiC nanocomposite coating layer can have a close thermal expansion coefficient to that of the substrate by controlling a volume fraction of SiC particles exisiting in the nanocomposite coating.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: February 20, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Jin-Kook Yoon, Gyeung-Ho Kim, Kyung-Tae Hong, Jung-Man Doh, Jong-Kwon Lee, Kyung-Hwan Lee, Keun-Hyung Son
  • Publication number: 20060029830
    Abstract: A NbSi2-base nanocomposite coating formed on the surface of niobium or niobium-base alloys is disclosed. The nanocomposite coating layer is manufactured by forming a niobium carbide layers or a niobium nitride layers by depositing of carbon or nitrogen on the surface, and then depositing silicon. The nanocomposite coating layer has a microstructure that SiC or Si3N4 particles are mostly precipitated on an equiaxed NbSi2 grain boundary. The thermal expansion coefficients of NbSi2-base nanocomposite coating layers become close to that of the substrates by adjusting the volume fraction of SiC or Si3N4 particles in the nanocomposite coating layers. Accordingly, the generation of cracks caused by thermal stress due to the mismatch in thermal expansion coefficient between the NbSi2-base nanocomposite coatings and the substrates can be suppressed, thereby improving the high-temperature oxidation resistance in the repeated thermal cycling use of the NbSi2-base nanocomposite coated substrates.
    Type: Application
    Filed: December 29, 2004
    Publication date: February 9, 2006
    Applicant: Korea Institute of Science and Technology
    Inventors: Jin-Kook Yoon, Gyeung-Ho Kim, Kyung-Tae Hong, Jung-Man Doh, Jong-Kwon Lee, Kyung-Hwan Lee, Keun-Hyung Son
  • Publication number: 20060003567
    Abstract: Disclosed are the MoSi2—SiC nanocomposite coating layer formed on surfaces of refractory metals such as Mo, Nb, Ta, W and their alloys. The MoSi2—SiC nanocomposite coating layer is manufactured by forming a molybdenum carbide (MoC and MoC2) coating layers on the surfaces of the substrates at high temperature, and the subsequent vapor-deposition of Si. The MoSi2—SiC nanocomposite coating layer has a microstructure in which SiC particles are mostly located on the equiaxed MoSi2 grain boundary. The MoSi2—SiC nanocomposite coating layer can have a close thermal expansion coefficient to that of the substrate by controlling a volume fraction of SiC particles exisiting in the nanocomposite coating. As a result, the generation of cracks due to the mismatch in the thermal expansion coefficients between the substrate and the nanocomposite coating layer is suppressed and the high-temperature repeated thermal cyclic oxidation resistance and the low-temperature oxidation resistance of the coated substrate are improved.
    Type: Application
    Filed: December 29, 2004
    Publication date: January 5, 2006
    Applicant: Korea Institute of Science and Techonology
    Inventors: Jin-Kook Yoon, Gyeung-Ho Kim, Kyung-Tae Hong, Jung-Mann Doh, Jong-Kwon Lee, Kyung-Hwan Lee, Keun-Hyung Son