Patents by Inventor Jong-Soo Park

Jong-Soo Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9452932
    Abstract: The present invention relates to a hydrogen production module by an integrated reaction/separation process, and a hydrogen production reactor using the same, and more specifically, provides a hydrogen production apparatus which laminates a plurality of layered unit cells, is mounted in a pressure-resistant chamber, and can be operated at a high pressure, wherein the unit cell comprises a first modified catalyst, and a second modified catalyst opposite to a hydrogen separator. The hydrogen production module can produce hydrogen using a hydrocarbon, carbon monoxide and an alcohol as sources. Particularly, all the modified catalysts are formed into a porous metal plate form, thereby maximizing the heat transfer effect necessary for reaction.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: September 27, 2016
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Chun-Boo Lee, Sung-Wook Lee, Jin-Woo Park
  • Patent number: 9427700
    Abstract: The present invention relates to a multilayer module for hydrogen separation using a pressure-resistant chamber so that unit cells using a metal separation membrane through which only hydrogen selectively passes are stacked to improve separation efficiency, and a mixed gas is uniformly supplied into each of the unit cells. In the multilayer module, the unit cells are stacked on each other, and the mixed gas is supplied into the chamber. Also, mixed gas input ports are each disposed in the side surfaces of the unit cells to supply the mixed gas.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: August 30, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Chun-Boo Lee, Sung-Wook Lee, Jin-Woo Park
  • Patent number: 9415343
    Abstract: The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: August 16, 2016
    Assignee: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Tae-Hwan Kim, Chun-Boo Lee, Sung-Wook Lee
  • Publication number: 20160188474
    Abstract: Methods and apparatus implementing Hardware/Software co-optimization to improve performance and energy for inter-VM communication for NFVs and other producer-consumer workloads. The apparatus include multi-core processors with multi-level cache hierarchies including and L1 and L2 cache for each core and a shared last-level cache (LLC). One or more machine-level instructions are provided for proactively demoting cachelines from lower cache levels to higher cache levels, including demoting cachelines from L1/L2 caches to an LLC. Techniques are also provided for implementing hardware/software co-optimization in multi-socket NUMA architecture system, wherein cachelines may be selectively demoted and pushed to an LLC in a remote socket. In addition, techniques are disclosure for implementing early snooping in multi-socket systems to reduce latency when accessing cachelines on remote sockets.
    Type: Application
    Filed: December 26, 2014
    Publication date: June 30, 2016
    Applicant: Intel Corporation
    Inventors: Ren Wang, Andrew J. Herdrich, Yen-cheng Liu, Herbert H. Hum, Jong Soo Park, Christopher J. Hughes, Namakkal N. Venkatesan, Adrian C. Moga, Aamer Jaleel, Zeshan A. Chishti, Mesut A. Ergin, Jr-shian Tsai, Alexander W. Min, Tsung-yuan C. Tai, Christian Maciocco, Rajesh Sankaran
  • Publication number: 20160179544
    Abstract: A processor includes a core, a hardware prefetcher, and a prefetcher control module. The hardware prefetcher includes logic to make speculative prefetch requests, through a memory subsystem, for elements for execution by the core, and logic to store prefetched elements in a cache. The prefetcher control module includes logic to selectively suppress, based on a hardware-prefetch suppression instruction executed by the core, a speculative prefetch request to be made by the hardware prefetcher.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Alexander F. Heinecke, Christopher J. Hughes, Daehyun Kim, Jong Soo Park
  • Patent number: 9333477
    Abstract: Disclosed is a hydrocarbon reforming device using a micro channel heater capable of utilizing combustion heat of a fuel as an energy source for reforming reaction of hydrocarbon, which includes metal sheets having micro channels laminated in plural, thus being suitably used as a middle and small compact type device for hydrogen production. Specifically, in the case where a hydrogen purification process is applied to a hydrogen production device combined with a separation membrane, since the hydrogen-containing gas, which does not penetrate the separation membrane, can be utilized as a fuel, the inventive device may be utilized as a hydrogen production system having high efficiency.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 10, 2016
    Assignee: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Chun-Boo Lee, Sung-Wook Lee, Shin-Kun Ryi
  • Patent number: 9323525
    Abstract: In an embodiment, a processor includes a vector execution unit having a plurality of lanes to execute operations on vector operands, a performance monitor coupled to the vector execution unit to maintain information regarding an activity level of the lanes, and a control logic coupled to the performance monitor to control power consumption of the vector execution unit based at least in part on the activity level of at least some of the lanes. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: April 26, 2016
    Assignee: Intel Corporation
    Inventors: Daehyun Kim, Jong Soo Park, Dong Hyuk Woo, Richard M. Yoo, Christopher J. Hughes
  • Patent number: 9292476
    Abstract: Fourier transform computation for distributed processing environments is disclosed. Example methods disclosed herein to compute a Fourier transform of an input data sequence include performing first processing on the input data sequence using a plurality of processors, the first processing resulting in an output data sequence having more data elements than the input data sequence Such example methods also include performing second processing on the output data sequence using the plurality of processors, the output data sequence being permutated among the plurality of processors, each of the processors performing the second processing on a respective permutated portion of the output data sequence to determine a respective, ordered segment of the Fourier transform of the input data sequence.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: March 22, 2016
    Assignee: Intel Corporation
    Inventors: Ping Tak Peter Tang, Jong Soo Park, Vladimir Petrov
  • Patent number: 9266732
    Abstract: The present invention relates to an apparatus for reforming a hydrocarbon using a micro-channel heater, which can utilize the combustion heat of a fuel as an energy source needed for reforming a hydrocarbon. A plurality of thin metal plates having micro-channels may be laminated in a multilayered structure so as to manufacture a small to medium compact hydrogen-producing apparatus. In particular, a reforming unit may be designed to have a multilayered structure so as to improve the capacity of a reformer up to a level desired by a user.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 23, 2016
    Assignee: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Chun-Boo Lee, Sung-Wook Lee
  • Patent number: 9250914
    Abstract: An apparatus and method for determining whether to execute an atomic operation locally or remotely. For example, one embodiment of a processor comprises: a decoder to decode an atomic operation on a local core; prediction logic on the local core to estimate a cost associated with execution of the atomic operation on the local core and a cost associated with execution of the atomic operation on a remote core; and the remote core to execute the atomic operation remotely if the prediction logic determines that the cost for execution on the local core is relatively greater than the cost for execution on the remote core; and the local core to execute the atomic operation locally if the prediction logic determines that the cost for local execution on the local core is relatively less than the cost for execution on the remote core.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 2, 2016
    Assignee: INTEL CORPORATION
    Inventors: Christopher J. Hughes, Daehyun Kim, Camilo A. Moreno, Jong Soo Park, Richard M. Yoo
  • Patent number: 9199204
    Abstract: The present invention relates to a method for protecting a hydrogen separation membrane from particulate contaminants in the process of producing or purifying hydrogen by using the separation membrane. The protection layer, wherein a cermet is formed by coating a ceramic and a metal able to cause surface movement of hydrogen molecules and hydrogen atoms to the surface of the separation membrane, plays the role of blocking contact between the separation membrane and particles (contaminant or catalyst) contained in the gas. In this way, it is possible to improve the durability of the hydrogen separation membrane and to minimize effects on the hydrogen permeability of the separation membrane.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 1, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Kyung-Ran Hwang, Jong-Soo Park, Shin-Kun Ryi, Jin-Suk Lee, Chung-Boo Lee, Sung-Wook Lee
  • Publication number: 20150328589
    Abstract: The present invention provides a hydrogen separation membrane module for capturing carbon dioxide. According to the present invention, a module material is used to suppress the reactivity by a carbon source in the separation membrane module during a carbon capture and storage (CCS) process, and is capable of preventing an occurrence of carbon and a decrease in hydrogen partial pressure by a side reaction.
    Type: Application
    Filed: October 30, 2013
    Publication date: November 19, 2015
    Inventors: Shin-Kun RYI, Jong-Soo PARK, Chun-Boo LEE, Sung-Wook LEE
  • Patent number: 9180421
    Abstract: The present invention relates to a micro-channel water-gas shift (WGS) reaction device for WGS for generating hydrogen and pre-combustion carbon capture and storage (CCS) from coal gasification, the device using a micro-channel heat exchanger and through-type metal catalyst capable of rapidly dissipating heat generated during single-stage WGS reaction of high concentration CO in a high temperature space.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 10, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Kyung-Ran Hwang, Jong-Soo Park, Shin-Kun Ryi, Jin-Suk Lee, Chun-Boo Lee, Sung-Wook Lee
  • Publication number: 20150298971
    Abstract: The present invention relates to a hydrogen production module by an integrated reaction/separation process, and a hydrogen production reactor using the same, and more specifically, provides a hydrogen production apparatus which laminates a plurality of layered unit cells, is mounted in a pressure-resistant chamber, and can be operated at a high pressure, wherein the unit cell comprises a first modified catalyst, and a second modified catalyst opposite to a hydrogen separator. The hydrogen production module can produce hydrogen using a hydrocarbon, carbon monoxide and an alcohol as sources. Particularly, all the modified catalysts are formed into a porous metal plate form, thereby maximizing the heat transfer effect necessary for reaction.
    Type: Application
    Filed: August 8, 2012
    Publication date: October 22, 2015
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Chun-Boo Lee, Sung-Wook Lee, Jin-Woo Park
  • Patent number: 9158702
    Abstract: An apparatus and method for implementing a scratchpad memory within a cache using priority hints. For example, a method according to one embodiment comprises: providing a priority hint for a scratchpad memory implemented using a portion of a cache; determining a page replacement priority based on the priority hint; storing the page replacement priority in a page table entry (PTE) associated with the page; and using the page replacement priority to determine whether to evict one or more cache lines associated with the scratchpad memory from the cache.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 13, 2015
    Assignee: INTEL CORPORATION
    Inventors: Christopher J. Hughes, Daya Shankar Khudia, Daehyun Kim, Jong Soo Park, Richard M. Yoo
  • Publication number: 20150242210
    Abstract: In an embodiment, a processor includes a vector execution unit having a plurality of lanes to execute operations on vector operands, a performance monitor coupled to the vector execution unit to maintain information regarding an activity level of the lanes, and a control logic coupled to the performance monitor to control power consumption of the vector execution unit based at least in part on the activity level of at least some of the lanes. Other embodiments are described and claimed.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 27, 2015
    Inventors: Daehyun Kim, Jong Soo Park, Dong Hyuk Woo, Richard M. Yoo, Christopher J. Hughes
  • Publication number: 20150178086
    Abstract: An apparatus and method for determining whether to execute an atomic operation locally or remotely. For example, one embodiment of a processor comprises: a decoder to decode an atomic operation on a local core; prediction logic on the local core to estimate a cost associated with execution of the atomic operation on the local core and a cost associated with execution of the atomic operation on a remote core; and the remote core to execute the atomic operation remotely if the prediction logic determines that the cost for execution on the local core is relatively greater than the cost for execution on the remote core; and the local core to execute the atomic operation locally if the prediction logic determines that the cost for local execution on the local core is relatively less than the cost for execution on the remote core.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Inventors: Christopher J. Hughes, Daehyun Kim, Camilo A. Moreno, Jong Soo Park, Richard M. Yoo
  • Publication number: 20150027307
    Abstract: The present invention relates to a method for preparing a hydrogen separation membrane capable of preventing the plating of Pd inside a porous support and a porous shielding layer when a separation membrane is prepared; a hydrogen separation membrane prepared therefrom; and a use thereof. In addition, the present invention relates to a device for preparing a hydrogen separation membrane; and a method for preparing a hydrogen separation membrane using the device, and in particular, relates to a device for preparing a hydrogen separation membrane capable of stably growing a Pd-containing separation membrane for hydrogen gas separation as a plating solution grows from the upper surface of a porous support to a uniform thickness by simply shielding the lower surface of the porous support when a hydrogen separation membrane is prepared using an electroless plating method.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 29, 2015
    Inventors: Shin Kun Ryi, Beom Seok Seo, Jong Soo Park, Dong Wook Lee, Sung Wook Lee
  • Publication number: 20150020686
    Abstract: The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.
    Type: Application
    Filed: January 2, 2013
    Publication date: January 22, 2015
    Applicant: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Tae-Hwan Kim, Chun-Boo Lee, Sung-Wook Lee
  • Publication number: 20140379998
    Abstract: Technologies for dynamic home tile mapping are described. an address request can be received from a processing core, the processing core being associated with a home tile table, the home tile table including respective mappings of one or more directory addresses to one or more home tiles. A buffer can be scanned to identify a presence of the address within the buffer. Based on an identification of the presence of the address within the buffer, a home tile identifier corresponding to the address can be provided from the buffer.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Christopher J. Hughes, Daehyun Kim, Jong Soo Park, Richard M. Yoo