Patents by Inventor Joodong Park

Joodong Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10923574
    Abstract: Techniques are disclosed for forming a transistor with one or more additional spacers, or inner-gate spacers, as referred to herein. The additional spacers may be formed between the gate and original spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion, a middle portion, and an upper portion. In some such cases, the lower and upper portions of the gate may be wider between the original spacers than the middle portion of the gate, which may be as a result of the additional spacers being located between the middle portion of the gate and the original spacers. In some such cases, the gate may approximate an I-shape, C-shape, -shape, ?-shape, L-shape, or ?-shape, for example.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 16, 2021
    Assignee: Intel Corporation
    Inventors: En-Shao Liu, Joodong Park, Chen-Guan Lee, Jui-Yen Lin, Chia-Hong Jan
  • Publication number: 20210036026
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Patent number: 10892261
    Abstract: Metal resistors and self-aligned gate edge (SAGE) architectures having metal resistors are described. In an example, a semiconductor structure includes a plurality of semiconductor fins protruding through a trench isolation region above a substrate. A first gate structure is over a first of the plurality of semiconductor fins. A second gate structure is over a second of the plurality of semiconductor fins. A gate edge isolation structure is laterally between and in contact with the first gate structure and the second gate structure. The gate edge isolation structure is on the trench isolation region and extends above an uppermost surface of the first gate structure and the second gate structure. A metal layer is on the gate edge isolation structure and is electrically isolated from the first gate structure and the second gate structure.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Roman W. Olac-Vaw, Joodong Park, Chen-Guan Lee, Chia-Hong Jan
  • Publication number: 20200411435
    Abstract: An integrated circuit structure comprises a base and a plurality of metal levels over the base. A first metal level includes a first dielectric material. The first metal level further includes a first plurality of interconnect lines in the first dielectric material, wherein the first plurality of interconnect lines in the first metal level have variable widths from relatively narrow to relatively wide, and wherein the first plurality of interconnect lines have variable heights based on the variable widths, such that a relatively wide one of the first plurality of interconnect lines has a taller height from the substrate than a relatively narrow one of the first plurality of interconnect lines, and a shorter distance to a top of the first metal level.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: En-Shao LIU, Joodong PARK, Chen-Guan LEE, Walid M. HAFEZ, Chia-Hong JAN, Jiansheng XU
  • Patent number: 10847544
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 10784378
    Abstract: Ultra-scaled fin pitch processes having dual gate dielectrics are described. For example, a semiconductor structure includes first and second semiconductor fins above a substrate. A first gate structure includes a first gate electrode over a top surface and laterally adjacent to sidewalls of the first semiconductor fin, a first gate dielectric layer between the first gate electrode and the first semiconductor fin and along sidewalls of the first gate structure, and a second gate dielectric layer between the first gate electrode and the first gate dielectric layer and along the first gate dielectric layer along the sidewalls of the first gate electrode. A second gate structure includes a second gate electrode over a top surface and laterally adjacent to sidewalls of the second semiconductor fin, and the second gate dielectric layer between the second gate electrode and the second semiconductor fin and along sidewalls of the second gate electrode.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 22, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Roman W. Olac-Vaw, Joodong Park, Chen-Guan Lee, Chia-Hong Jan, Everett S. Cassidy-Comfort
  • Publication number: 20200273887
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Publication number: 20200251470
    Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.
    Type: Application
    Filed: April 13, 2020
    Publication date: August 6, 2020
    Inventors: Curtis TSAI, Chia-Hong JAN, Jeng-Ya David YEH, Joodong PARK, Walid M. HAFEZ
  • Patent number: 10692888
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: June 23, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 10658361
    Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Curtis Tsai, Chia-Hong Jan, Jeng-Ya David Yeh, Joodong Park, Walid M. Hafez
  • Publication number: 20200093162
    Abstract: Provided is a laver-snack produced by attaching a cereal sheet to a laver sheet to obtain a double-layer sheet and then roasting the double-layer sheet, and a method of producing the laver-snack.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Suyeon CHUNG, Joodong PARK, Changyong LEE, Jeongseok AN, Soonhee KWON, Sungwoo SHINE, Soyoung YOON, Sunghee KIM
  • Publication number: 20200066712
    Abstract: Metal resistors and self-aligned gate edge (SAGE) architectures having metal resistors are described. In an example, a semiconductor structure includes a plurality of semiconductor fins protruding through a trench isolation region above a substrate. A first gate structure is over a first of the plurality of semiconductor fins. A second gate structure is over a second of the plurality of semiconductor fins. A gate edge isolation structure is laterally between and in contact with the first gate structure and the second gate structure. The gate edge isolation structure is on the trench isolation region and extends above an uppermost surface of the first gate structure and the second gate structure. A metal layer is on the gate edge isolation structure and is electrically isolated from the first gate structure and the second gate structure.
    Type: Application
    Filed: September 29, 2016
    Publication date: February 27, 2020
    Inventors: Walid M. HAFEZ, Roman W. OLAC-VAW, Joodong PARK, Chen-Guan LEE, Chia-Hong JAN
  • Publication number: 20200066897
    Abstract: Ultra-scaled fin pitch processes having dual gate dielectrics are described. For example, a semiconductor structure includes first and second semiconductor fins above a substrate. A first gate structure includes a first gate electrode over a top surface and laterally adjacent to sidewalls of the first semiconductor fin, a first gate dielectric layer between the first gate electrode and the first semiconductor fin and along sidewalls of the first gate structure, and a second gate dielectric layer between the first gate electrode and the first gate dielectric layer and along the first gate dielectric layer along the sidewalls of the first gate electrode. A second gate structure includes a second gate electrode over a top surface and laterally adjacent to sidewalls of the second semiconductor fin, and the second gate dielectric layer between the second gate electrode and the second semiconductor fin and along sidewalls of the second gate electrode.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 27, 2020
    Inventors: Walid M. HAFEZ, Roman W. OLAC-VAW, Joodong PARK, Chen-Guan LEE, Chia-Hong JAN, Everett S. CASSIDY-COMFORT
  • Patent number: 10559688
    Abstract: Techniques are disclosed for forming a transistor with enhanced thermal performance. The enhanced thermal performance can be derived from the inclusion of thermal boost material adjacent to the transistor, where the material can be selected based on the transistor type being formed. In the case of PMOS devices, the adjacent thermal boost material may have a high positive linear coefficient of thermal expansion (CTE) (e.g., greater than 5 ppm/° C. at around 20° C.) and thus expand as operating temperatures increase, thereby inducing compressive strain on the channel region of an adjacent transistor and increasing carrier (e.g., hole) mobility. In the case of NMOS devices, the adjacent thermal boost material may have a negative linear CTE (e.g., less than 0 ppm/° C. at around 20° C.) and thus contract as operating temperatures increase, thereby inducing tensile strain on the channel region of an adjacent transistor and increasing carrier (e.g., electron) mobility.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Chen-Guan Lee, Walid M. Hafez, Joodong Park, Chia-Hong Jan, Hsu-Yu Chang
  • Patent number: 10535747
    Abstract: Techniques are disclosed for forming a transistor with one or more additional gate spacers. The additional spacers may be formed between the gate and original gate spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion and an upper portion. In some such cases, the lower portion of the gate may be narrower in width between the original gate spacers than the upper portion of the gate, which may be as a result of the additional spacers being located between the lower portion of the gate and the original gate spacers. In some such cases, the gate may approximate a “T” shape or various derivatives of that shape such as -shape or -shape, for example.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: January 14, 2020
    Assignee: INTEL CORPORATION
    Inventors: En-Shao Liu, Joodong Park, Chen-Guan Lee, Chia-Hong Jan
  • Publication number: 20200006509
    Abstract: Techniques are disclosed for forming a transistor with one or more additional spacers, or inner-gate spacers, as referred to herein. The additional spacers may be formed between the gate and original spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion, a middle portion, and an upper portion. In some such cases, the lower and upper portions of the gate may be wider between the original spacers than the middle portion of the gate, which may be as a result of the additional spacers being located between the middle portion of the gate and the original spacers. In some such cases, the gate may approximate an I-shape, C-shape, -shape, ?-shape, L-shape, or ?-shape, for example.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: EN-SHAO LIU, JOODONG PARK, CHEN-GUAN LEE, JUI-YEN LIN, CHIA-HONG Jan
  • Publication number: 20190304840
    Abstract: An apparatus comprising at least one transistor in a first area of a substrate and at least one transistor in a second area, a work function material on a channel region of each of the at least one transistor, wherein an amount of work function material in the first area is different than an amount of work function material in the second area. A method comprising depositing a work function material and a masking material on at least one transistor body in a first area and at least one in a second area; removing less than an entire portion of the masking material so that the portion of the work function material that is exposed in the first area is different than that exposed in the second area; removing the exposed work function material; and forming a gate electrode on each of the at least one transistor bodies.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 3, 2019
    Inventors: Chen-Guan LEE, Everett S. CASSIDY-COMFORT, Joodong PARK, Walid M. HAFEZ, Chia-Hong JAN, Rahul RAMASWAMY, Neville L. DIAS, Hsu-Yu CHANG
  • Patent number: 10431661
    Abstract: Techniques are disclosed for forming a transistor with one or more additional spacers, or inner-gate spacers, as referred to herein. The additional spacers may be formed between the gate and original spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion, a middle portion, and an upper portion. In some such cases, the lower and upper portions of the gate may be wider between the original spacers than the middle portion of the gate, which may be as a result of the additional spacers being located between the middle portion of the gate and the original spacers. In some such cases, the gate may approximate an I-shape, -shape, -shape, ?-shape, L-shape, or ?-shape, for example.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: October 1, 2019
    Assignee: INTEL CORPORATION
    Inventors: En-Shao Liu, Joodong Park, Chen-Guan Lee, Jui-Yen Lin, Chia-Hong Jan
  • Publication number: 20190296114
    Abstract: Non-planar semiconductor devices having omega-fins with doped sub-fin regions and methods of fabricating non-planar semiconductor devices having omega-fins with doped sub-fin regions are described. For example, a semiconductor device includes a plurality of semiconductor fins disposed above a semiconductor substrate, each semiconductor fin having a sub-fin portion below a protruding portion, the sub-fin portion narrower than the protruding portion. A solid state dopant source layer is disposed above the semiconductor substrate, conformal with the sub-fin region but not the protruding portion of each of the plurality of semiconductor fins. An isolation layer is disposed above the solid state dopant source layer and between the sub-fin regions of the plurality of semiconductor fins. A gate stack is disposed above the isolation layer and conformal with the protruding portions of each of the plurality of semiconductor fins.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 26, 2019
    Inventors: Gopinath BHIMARASETTI, Walid M. HAFEZ, Joodong PARK, Weimin HAN, Raymond E. COTNER, Chia-Hong JAN
  • Patent number: 10355093
    Abstract: Non-planar semiconductor devices having omega-fins with doped sub-fin regions and methods of fabricating non-planar semiconductor devices having omega-fins with doped sub-fin regions are described. For example, a semiconductor device includes a plurality of semiconductor fins disposed above a semiconductor substrate, each semiconductor fin having a sub-fin portion below a protruding portion, the sub-fin portion narrower than the protruding portion. A solid state dopant source layer is disposed above the semiconductor substrate, conformal with the sub-fin region but not the protruding portion of each of the plurality of semiconductor fins. An isolation layer is disposed above the solid state dopant source layer and between the sub-fin regions of the plurality of semiconductor fins. A gate stack is disposed above the isolation layer and conformal with the protruding portions of each of the plurality of semiconductor fins.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 16, 2019
    Assignee: Intel Corporation
    Inventors: Gopinath Bhimarasetti, Walid M. Hafez, Joodong Park, Weimin Han, Raymond E. Cotner, Chia-Hong Jan