Patents by Inventor Joodong Park

Joodong Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10204999
    Abstract: A microelectronic transistor may be fabricated having an airgap spacer formed as a gate sidewall spacer, such that the airgap spacer is positioned between a gate electrode and a source contact and/or a drain contact of the microelectronic transistor. As the dielectric constant of gaseous substances is significantly lower than that of a solid or a semi-solid dielectric material, the airgap spacer may result in minimal capacitive coupling between the gate electrode and the source contact and/or the drain contact, which may reduce circuit delay of the microelectronic transistor.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Chen-Guan Lee, Joodong Park, En-Shao Liu, Everett S. Cassidy-Comfort, Walid M. Hafez, Chia-Hong Jan
  • Publication number: 20190027604
    Abstract: Techniques are disclosed for forming a transistor with enhanced thermal performance. The enhanced thermal performance can be derived from the inclusion of thermal boost material adjacent to the transistor, where the material can be selected based on the transistor type being formed. In the case of PMOS devices, the adjacent thermal boost material may have a high positive linear coefficient of thermal expansion (CTE) (e.g., greater than 5 ppm/° C. at around 20° C.) and thus expand as operating temperatures increase, thereby inducing compressive strain on the channel region of an adjacent transistor and increasing carrier (e.g., hole) mobility. In the case of NMOS devices, the adjacent thermal boost material may have a negative linear CTE (e.g., less than 0 ppm/° C. at around 20° C.) and thus contract as operating temperatures increase, thereby inducing tensile strain on the channel region of an adjacent transistor and increasing carrier (e.g., electron) mobility.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 24, 2019
    Applicant: INTEL CORPORATION
    Inventors: CHEN-GUAN LEE, WALID M. HAFEZ, JOODONG PARK, CHIA-HONG JAN, HSU-YU CHANG
  • Publication number: 20190006279
    Abstract: IC device structures including a lateral compound resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor. Rather than being stacked vertically, a compound resistive trace may include a plurality of resistive materials arranged laterally over a substrate. Along a resistive trace length, a first resistive material is in contact with a sidewall of a second resistive material. A portion of a first resistive material along a centerline of the resistive trace may be replaced with a second resistive material so that the second resistive material is embedded within the first resistive material.
    Type: Application
    Filed: August 26, 2015
    Publication date: January 3, 2019
    Applicant: Intel Corporation
    Inventors: Chen-Guan Lee, Vadym Kapinus, Pei-Chi Liu, Joodong Park, Walid M. Hafez, Chia-Hong Jan
  • Publication number: 20180374927
    Abstract: Techniques are disclosed for forming a transistor with one or more additional gate spacers. The additional spacers may be formed between the gate and original gate spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion and an upper portion. In some such cases, the lower portion of the gate may be narrower in width between the original gate spacers than the upper portion of the gate, which may be as a result of the additional spacers being located between the lower portion of the gate and the original gate spacers. In some such cases, the gate may approximate a “T” shape or various derivatives of that shape such as -shape or -shape, for example.
    Type: Application
    Filed: December 23, 2015
    Publication date: December 27, 2018
    Applicant: INTEL CORPORATION
    Inventors: EN-SHAO LIU, JOODONG PARK, CHEN-GUAN LEE, CHIA-HONG Jan
  • Publication number: 20180350932
    Abstract: Techniques are disclosed for forming a transistor with one or more additional spacers, or inner-gate spacers, as referred to herein. The additional spacers may be formed between the gate and original spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion, a middle portion, and an upper portion. In some such cases, the lower and upper portions of the gate may be wider between the original spacers than the middle portion of the gate, which may be as a result of the additional spacers being located between the middle portion of the gate and the original spacers. In some such cases, the gate may approximate an I-shape, -shape, -shape, ?-shape, L-shape, or J-shape, for example.
    Type: Application
    Filed: December 23, 2015
    Publication date: December 6, 2018
    Applicant: INTEL CORPORATION
    Inventors: EN-SHAO LIU, JOODONG PARK, CHEN-GUAN LEE, JUI-YEN LIN, CHIA-HONG Jan
  • Patent number: 10096599
    Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: October 9, 2018
    Assignee: Intel Corporation
    Inventors: Curtis Tsai, Chia-Hong Jan, Jeng-Ya David Yeh, Joodong Park, Walid M. Hafez
  • Publication number: 20180226432
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Publication number: 20180197966
    Abstract: A microelectronic transistor may be fabricated having an airgap spacer formed as a gate sidewall spacer, such that the airgap spacer is positioned between a gate electrode and a source contact and/or a drain contact of the microelectronic transistor. As the dielectric constant of gaseous substances is significantly lower than that of a solid or a semi-solid dielectric material, the airgap spacer may result in minimal capacitive coupling between the gate electrode and the source contact and/or the drain contact, which may reduce circuit delay of the microelectronic transistor.
    Type: Application
    Filed: July 17, 2015
    Publication date: July 12, 2018
    Applicant: Intel Corporation
    Inventors: Chen-Guan Lee, Joodong Park, En-Shao Liu, Everett S. Cassidy-Comfort, Walid M. Hafez, Chia-Hong Jan
  • Patent number: 9972642
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: May 15, 2018
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Publication number: 20180114695
    Abstract: Dual height glass is described for doping a fin of a field effect transistor structure in an integrated circuit. In one example, a method includes applying a glass layer over a fin of a FinFET structure, the fin having a source/drain region and a gate region, applying a polysilicon layer over the gate region, removing a portion of the glass layer from the source/drain region after applying the polysilicon, and thermally annealing the glass to drive dopants into the fin, and applying an epitaxial layer over the source/drain region.
    Type: Application
    Filed: June 22, 2015
    Publication date: April 26, 2018
    Inventors: Chen-Guan LEE, Lu YANG, Joodong PARK, Chia-Hong JAN
  • Publication number: 20180040637
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Patent number: 9881927
    Abstract: CMOS-compatible polycide fuse structures and methods of fabricating CMOS-compatible polycide fuse structures are described. In an example, a semiconductor structure includes a substrate. A polycide fuse structure is disposed above the substrate and includes silicon and a metal. A metal oxide semiconductor (MOS) transistor structure is disposed above the substrate and includes a metal gate electrode.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: January 30, 2018
    Assignee: Intel Corporation
    Inventors: Jeng-Ya D. Yeh, Chia-Hong Jan, Walid M. Hafez, Joodong Park
  • Patent number: 9806095
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 9786783
    Abstract: Techniques are disclosed for forming transistor architectures having extended recessed spacer and source/drain (S/D) regions. In some embodiments, a recess can be formed, for example, in the top of a fin of a fin-based field-effect transistor (finFET), such that the recess allows for forming extended recessed spacers and S/D regions in the finFET that are adjacent to the gate stack. In some instances, this configuration provides a higher resistance path in the top of the fin, which can reduce gate-induced drain leakage (GIDL) in the finFET. In some embodiments, precise tuning of the onset of GIDL can be provided. Some embodiments may provide a reduction in junction leakage (Lb) and a simultaneous increase in threshold voltage (VT). The disclosed techniques can be implemented with planar and non-planar fin-based architectures and can be used in standard metal-oxide-semiconductor (MOS) and complementary MOS (CMOS) process flows, in some embodiments.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: October 10, 2017
    Assignee: INTEL CORPORATION
    Inventors: Walid M. Hafez, Joodong Park, Jeng-Ya D. Yeh, Chia-Hong Jan, Curtis Tsai
  • Patent number: 9780217
    Abstract: Non-planar semiconductor devices having self-aligned fins with top blocking layers and methods of fabricating non-planar semiconductor devices having self-aligned fins with top blocking layers are described. For example, a semiconductor structure includes a semiconductor fin disposed above a semiconductor substrate and having a top surface. An isolation layer is disposed on either side of the semiconductor fin, and recessed below the top surface of the semiconductor fin to provide a protruding portion of the semiconductor fin. The protruding portion has sidewalls and the top surface. A gate blocking layer has a first portion disposed on at least a portion of the top surface of the semiconductor fin, and has a second portion disposed on at least a portion of the sidewalls of the semiconductor fin. The first portion of the gate blocking layer is continuous with, but thicker than, the second portion of the gate blocking layer. A gate stack is disposed on the first and second portions of the gate blocking layer.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: October 3, 2017
    Assignee: Intel Corporation
    Inventors: Jeng-Ya D. Yeh, Chia-Hong Jan, Walid M. Hafez, Joodong Park
  • Patent number: 9748252
    Abstract: Techniques for providing non-volatile antifuse memory elements and other antifuse links are disclosed herein. In some embodiments, the antifuse memory elements are configured with non-planar topology such as FinFET topology. In some such embodiments, the fin topology can be manipulated and used to effectively promote lower breakdown voltage transistors, by creating enhanced-emission sites which are suitable for use in lower voltage non-volatile antifuse memory elements. In one example embodiment, a semiconductor antifuse device is provided that includes a non-planar diffusion area having a fin configured with a tapered portion, a dielectric isolation layer on the fin including the tapered portion, and a gate material on the dielectric isolation layer. The tapered portion of the fin may be formed, for instance, by oxidation, etching, and/or ablation, and in some cases includes a base region and a thinned region, and the thinned region is at least 50% thinner than the base region.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: August 29, 2017
    Assignee: INTEL CORPORATION
    Inventors: Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh
  • Patent number: 9741721
    Abstract: Low leakage non-planar access transistors for embedded dynamic random access memory (eDRAM) and methods of fabricating low leakage non-planar access transistors for eDRAM are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate and including a narrow fin region disposed between two wide fin regions. A gate electrode stack is disposed conformal with the narrow fin region of the semiconductor fin, the gate electrode stack including a gate electrode disposed on a gate dielectric layer. The gate dielectric layer includes a lower layer and an upper layer, the lower layer composed of an oxide of the semiconductor fin. A pair of source/drain regions is included, each of the source/drain regions disposed in a corresponding one of the wide fin regions.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 22, 2017
    Assignee: Intel Corporation
    Inventors: Joodong Park, Gopinath Bhimarasetti, Rahul Ramaswamy, Chia-Hong Jan, Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai
  • Publication number: 20170162693
    Abstract: Non-planar transistor devices which include oxide isolation structures formed in semiconductor bodies thereof through the formation of an oxidizing catalyst layer on the semiconductor bodies followed by an oxidation process. In one embodiment, the semiconductor bodies may be formed from silicon-containing materials and the oxidizing catalyst layer may comprise aluminum oxide, wherein oxidizing the semiconductor body to form an oxide isolation zone forms a semiconductor body first portion and a semiconductor body second portion with the isolation zone substantially electrically separating the semiconductor body first portion and the semiconductor body second portion.
    Type: Application
    Filed: August 5, 2014
    Publication date: June 8, 2017
    Applicant: INTEL CORPORATION
    Inventors: Gopinath Bhimarasetti, Walid Hafez, Joodong Park, Weimin Han, Raymond Cotner
  • Publication number: 20170069758
    Abstract: Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Chia-Hong Jan, Walid M. Hafez, Curtis Tsai, Jeng-Ya D. Yeh, Joodong Park
  • Publication number: 20170069725
    Abstract: Non-planar semiconductor devices having omega-fins with doped sub-fin regions and methods of fabricating non-planar semiconductor devices having omega-fins with doped sub-fin regions are described. For example, a semiconductor device includes a plurality of semiconductor fins disposed above a semiconductor substrate, each semiconductor fin having a sub-fin portion below a protruding portion, the sub-fin portion narrower than the protruding portion. A solid state dopant source layer is disposed above the semiconductor substrate, conformal with the sub-fin region but not the protruding portion of each of the plurality of semiconductor fins. An isolation layer is disposed above the solid state dopant source layer and between the sub-fin regions of the plurality of semiconductor fins. A gate stack is disposed above the isolation layer and conformal with the protruding portions of each of the plurality of semiconductor fins.
    Type: Application
    Filed: June 26, 2014
    Publication date: March 9, 2017
    Inventors: GOPINATH BHIMARASETTI, WALID M. HAFEZ, JOODONG PARK, WEIMIN HAN, RAYMOND E. COTNER, CHIA-HONG JAN