Patents by Inventor Jordan Asher Katine

Jordan Asher Katine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8514525
    Abstract: A current-perpendicular-to-the-plane magnetoresistive (CPP MR) sensor has a shield layers that also functions as the sensor's reference layer. In a CPP MR disk drive read head, the shield layer has a fixed magnetization oriented substantially parallel to the air-bearing surface (ABS) of the slider that supports the read head. The quiescent magnetization of the sensor free layer is oriented at an angle relative to the magnetization of the shield layer, preferably between 120 and 150 degrees, to optimize the sensor response to magnetic fields from the recorded data bits on the disk. The magnetization of the free layer is biased by a biasing structure that includes a ferromagnetic side biasing layer formed near the side edges of the free layer and a ferromagnetic back biasing layer that is recessed from the ABS and has a magnetization oriented generally orthogonal to the ABS.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Jeffrey R. Childress, Jordan Asher Katine, Manfred Ernst Schabes
  • Patent number: 8486289
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 16, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, Jordan Asher Katine, Barry Cushing Stipe
  • Patent number: 8339739
    Abstract: A write head structure for use with thermally assisted recording is disclosed. Improved heat sinking is provided for removing thermal energy created by a ridge aperture near field light transducer. Metal films conduct heat away from the region near the ridge aperture to the high pressure air film at the ABS between the head and media. This heat is further dissipated by the media. The metal films have varying thickness to improve lateral conductivity and may be composed of Au combined with a harder metal such as Ru to improve wear characteristics at the ABS.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 25, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Jordan Asher Katine, Neil Leslie Robertson, Barry Cushing Stipe
  • Publication number: 20120307404
    Abstract: A spin-torque oscillator (STO) has a single free ferromagnetic layer that forms part of both a giant magnetoresistance (GMR) structure with a nonmagnetic conductive spacer layer and a tunneling magnetoresistance (TMR) structure with a tunnel barrier layer. The STO has three electrical terminals that connect to electrical circuitry that provides a spin-torque excitation current through the conductive spacer layer and a lesser sense current through the tunnel barrier layer. When the STO is used as a magnetic field sensor, the excitation current causes the magnetization of the free layer to oscillate at a fixed base frequency in the absence of an external magnetic field. A detector coupled to the sense current detects shifts in the free layer magnetization oscillation frequency from the base frequency in response to external magnetic fields.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Patrick Mesquita Braganca, Bruce Alvin Gurney, Jordan Asher Katine
  • Patent number: 8320080
    Abstract: A spin-torque oscillator (STO) has a single free ferromagnetic layer that forms part of both a giant magnetoresistance (GMR) structure with a nonmagnetic conductive spacer layer and a tunneling magnetoresistance (TMR) structure with a tunnel barrier layer. The STO has three electrical terminals that connect to electrical circuitry that provides a spin-torque excitation current through the conductive spacer layer and a lesser sense current through the tunnel barrier layer. When the STO is used as a magnetic field sensor, the excitation current causes the magnetization of the free layer to oscillate at a fixed base frequency in the absence of an external magnetic field. A detector coupled to the sense current detects shifts in the free layer magnetization oscillation frequency from the base frequency in response to external magnetic fields.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Patrick Mesquita Braganca, Bruce Alvin Gurney, Jordan Asher Katine
  • Patent number: 8178158
    Abstract: A method of making a current-perpendicular-to-the-plane giant magnetoresistive (CPP-GMR) sensor with a confined-current-path (CCP) layer uses an array of self-assembled ferritin protein molecules with inorganic cores to make the CCP layer in the sensor stack. In one embodiment, the ferritin molecules with cores of insulating oxide particles are deposited on an electrically conductive support layer and the ferritin molecules are dissolved, leaving an array of insulating oxide particles. An electrically conducting layer is deposited over the oxide particles and into the regions between the oxide particles to form the CCP layer. In another embodiment, the ferritin molecules with inorganic particles in their cores are deposited on an electrically insulating support layer and the ferritin molecules are dissolved, leaving an array of inorganic particles that function as an etch mask.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: May 15, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Berthold, Matthew J. Carey, Jeffrey R. Childress, Jordan Asher Katine, Stefan Maat
  • Patent number: 8166633
    Abstract: A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 1, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Publication number: 20120070784
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 22, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, JR., Jordan Asher Katine, Barry Cushing Stipe
  • Publication number: 20120063035
    Abstract: A current-perpendicular-to-the-plane magnetoresistive (CPP MR) sensor has a shield layers that also functions as the sensor's reference layer. In a CPP MR disk drive read head, the shield layer has a fixed magnetization oriented substantially parallel to the air-bearing surface (ABS) of the slider that supports the read head. The quiescent magnetization of the sensor free layer is oriented at an angle relative to the magnetization of the shield layer, preferably between 120 and 150 degrees, to optimize the sensor response to magnetic fields from the recorded data bits on the disk. The magnetization of the free layer is biased by a biasing structure that includes a ferromagnetic side biasing layer formed near the side edges of the free layer and a ferromagnetic back biasing layer that is recessed from the ABS and has a magnetization oriented generally orthogonal to the ABS.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 15, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Jeffrey R. Childress, Jordan Asher Katine, Manfred Ernst Schabes
  • Publication number: 20120050906
    Abstract: A write head structure for use with thermally assisted recording is disclosed. Improved heat sinking is provided for removing thermal energy created by a ridge aperture near field light transducer. Metal films conduct heat away from the region near the ridge aperture to the high pressure air film at the ABS between the head and media. This heat is further dissipated by the media. The metal films have varying thickness to improve lateral conductivity and may be composed of Au combined with a harder metal such as Ru to improve wear characteristics at the ABS.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Inventors: Hamid Balamane, Jordan Asher Katine, Neil Leslie Robertson, Barry Cushing Stipe
  • Patent number: 8092704
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 10, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, Jr., Jordan Asher Katine, Barry Cushing Stipe
  • Patent number: 8035927
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having a lead structure that is self aligned with a magnetic shunt structure. To form an EMR sensor according to an embodiment of the invention, a plurality of layers are deposited to form quantum well structure such as a two dimensional electron gas structure (2DEG). A first mask structure is deposited having two openings, and a material removal process is performed to remove portions of the sensor material from areas exposed by the openings. The distance between the two openings in the first mask defines a distance between a set of leads and the shunt structure. A non-magnetic metal is then deposited. A second mask structure is then formed to define shape of the leads.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: October 11, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Robert E. Fontana, Jr., Bruce Alvin Gurney, Jordan Asher Katine, Sergio Nicoletti
  • Patent number: 7950137
    Abstract: A method for manufacturing a write pole for perpendicular magnetic recording for accurately defining a side shield throat height and write pole flare point. The magnetic structure includes a write pole portion and first and second side shield portions. The side shields portions are magnetically connected with the write pole portion in a region in front of an intended air bearing surface plane (e.g. in the direction from which lapping will progress). The side shields portions are each separated from the write pole portion in a region behind the intended air bearing surface plane by notches that terminate at a desired location relative to the intended air bearing surface plane and which open up in a region behind the intended air bearing surface plane.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: May 31, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Thomas Dudley Boon, Jr., Ming Jiang, Jordan Asher Katine, Quang Le, Yinshi Liu, Xhavin Sinha, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20110086440
    Abstract: A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Patent number: 7881020
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Patent number: 7765675
    Abstract: Current-perpendicular-to-plane (CPP) read sensors for magnetic heads having constrained current paths made of lithographically-defined conductive vias, and methods of making the same, are disclosed. In one example, a sensor stack structure which includes an electrically conductive spacer layer is formed over a first shield layer. An insulator layer is deposited over and adjacent the spacer layer, and a resist structure which exposes one or more portions of the insulator layer is formed over the insulator layer. With the resist structure in place, the exposed insulator layer portions are removed by etching to form one or more apertures through the insulator layer down to the spacer layer. Electrically conductive materials are subsequently deposited within the one or more apertures to form one or more lithographically-defined conductive vias of a current-constraining structure.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 3, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jeffrey Robinson Childress, Jordan Asher Katine
  • Publication number: 20100163521
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands BV
    Inventors: Hamid Balamane, Thomas Dudley Boone, JR., Jordan Asher Katine, Barry Cushing Stipe
  • Patent number: 7646570
    Abstract: Current-perpendicular-to-plane (CPP) read sensors having constrained current paths made of lithographically-defined conductive vias with surrounding oxidized metal sublayers, and methods of making the same, are disclosed. In one illustrative example, at least part of a sensor stack structure which includes an electrically conductive spacer layer is formed. A metal (e.g. Ta) sublayer is then deposited over and adjacent the spacer layer, followed by one of an oxidation process, a nitridation process, and an oxynitridation process, to produce an insulator (e.g. TaOx) from the metal sublayer. The metal sublayer deposition and oxidation/nitridation/oxynitridation processes are repeated as necessary to form the insulator with a suitable thickness. Next, a resist structure which exposes one or more portions of the insulator is formed over the insulator. With the resist structure in place, exposed insulator materials are removed by etching to form one or more apertures through the insulator down to the spacer layer.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: January 12, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hardayal Singh Gill, Jordan Asher Katine, Alexander Zeltser
  • Publication number: 20090297700
    Abstract: A method of making a current-perpendicular-to-the-plane giant magnetoresistive (CPP-GMR) sensor with a confined-current-path (CCP) layer uses an array of self-assembled ferritin protein molecules with inorganic cores to make the CCP layer in the sensor stack. In one embodiment, the ferritin molecules with cores of insulating oxide particles are deposited on an electrically conductive support layer and the ferritin molecules are dissolved, leaving an array of insulating oxide particles. An electrically conducting layer is deposited over the oxide particles and into the regions between the oxide particles to form the CCP layer. In another embodiment, the ferritin molecules with inorganic particles in their cores are deposited on an electrically insulating support layer and the ferritin molecules are dissolved, leaving an array of inorganic particles that function as an etch mask.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 3, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Thomas R. Berthold, Matthew J. Carey, Jeffrey R. Childress, Jordan Asher Katine, Stefan Maat
  • Publication number: 20090258186
    Abstract: A process for forming a plurality of sliders for use in thermally-assisted recording (TAR) disk drives includes a wafer-level process for forming a plurality of aperture structures, and optionally abutting optical channels, on a wafer surface prior to cutting the wafer into individual sliders. The wafer has a generally planar surface arranged into a plurality of rectangularly-shaped regions. In each rectangular region a first metal layer is deposited on the wafer surface, followed by a layer of radiation-transmissive aperture material, which is then lithographically patterned to define the width of the aperture, the aperture width being parallel to the length of the rectangularly-shaped region. A second metal layer is deposited over the patterned layer of aperture material. The resulting structure is then lithographically patterned to define an aperture structure comprising aperture material surrounded by metal and having parallel radiation entrance and exit faces orthogonal to the wafer surface.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B. V.
    Inventors: Robert E. Fontana, JR., Jordan Asher Katine, Neil Leslie Robertson, Barry Cushing Stipe, Timothy Carl Strand, Bruce David Terris