Patents by Inventor Joseph Amalan Arul Emmanuel

Joseph Amalan Arul Emmanuel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9107098
    Abstract: Systems, processes, and structures allow enhanced near-field testing of the uplink and/or downlink performance of MIMO wireless devices (DUT), such as for any of product development, product verification, and/or production testing. Signal channels may preferably be emulated to test the performance of a device under test (DUT) over a range of simulated distances, within a near-field test environment. An enhanced process provides automated testing of a DUT over a wireless network, e.g. such as but not limited to a WLAN. The enhanced MIMO channel emulator may preferably be operated over a high dynamic range.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 11, 2015
    Assignee: NETGEAR, INC.
    Inventors: Joseph Amalan Arul Emmanuel, Jonathan M. Hummel, Charles W. Reed, Gin C. Wang
  • Publication number: 20150215950
    Abstract: A method for selecting signal channel for a wireless networking device is provided. The method collects WLAN and non-WLAN interference information on the candidate channels. The method then determines a weighted grade for each of the candidate channels based on the collected WLAN and non-WLAN interference information. A channel is selected among the candidate channels based on the weighted grades. The method further adjusts WLAN transmit parameter of the wireless networking device based on the collected WLAN and non-WLAN interference information.
    Type: Application
    Filed: December 5, 2014
    Publication date: July 30, 2015
    Inventors: Peiman AMINI, Joseph Amalan Arul EMMANUEL
  • Publication number: 20150208355
    Abstract: Various of the disclosed embodiments concern efficiency improvements in wireless products. For example, some embodiments specify profiles for regional and custom-specified operational constraints. The profiles may be retrieved from across a network or stored locally upon the device. The profiles may specify various configuration adjustments that optimize the system's performance. For example, when possible, some embodiments may allow the system to operate at a lower power level and to thereby save energy. Various factors and conditions may be assessed in some embodiments prior to adjusting the existing power configuration.
    Type: Application
    Filed: April 15, 2014
    Publication date: July 23, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Shun-Liang Yu, Peiman Amini
  • Publication number: 20150172945
    Abstract: A receiver is provided that receives signals from a device under test (DUT) for one or more modes of operation. For each mode, the system detects beacon transmission signals from the DUT, and counts the number of beacons for a period of time. If the count is not consistent with an expected count, e.g. a stored value, the system may preferably provide an output to indicate that there is a problem with the DUT. If the count is consistent with the expected count, the system may preferably perform further testing for other modes of operation. If the count output of the DUT is consistent with expected counts over each of the operation modes, the system may provide an indication that the DUT has passed the beacon tests.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 18, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Jonathan M. HUMMEL, Shahrokh M. ZARDOSHTI
  • Patent number: 9048545
    Abstract: Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 2, 2015
    Assignee: NETGEAR, INC.
    Inventors: Joseph Amalan Arul Emmanuel, Chia-Wei Liu
  • Publication number: 20150139204
    Abstract: Various embodiments disclose systems and methods for employing a Sub1G signal (e.g. a signal in the range of approximately 500 Mhz or 800 mHz) for use with internal and/or external components of various user devices. The Sub1G region may provide a path loss advantage over traditional 2.4 and 5 Ghz systems because of the lower frequency in free-space path loss model. Sub 1G may also present less interference compared to 2.4 GHz (e.g., better QoS for applications such as VOIP, Gaming, etc.). In some of the disclosed embodiments, Sub1G may be employed using current 2.4G or 5G Wireless LAN chipset with RF Up/Down Converters. In some embodiments, the Sub1G approach may be used to create a Long Range Bridge, Long Range Extender, Long Range Client, Long Range Hotspot, etc.
    Type: Application
    Filed: April 1, 2014
    Publication date: May 21, 2015
    Inventors: Joseph Amalan Arul Emmanuel, Peiman Amini, Paul Nysen, Shun-Liang Yu, Chia-Wei Liu, Shahrokh Zardoshti, Gin Wang, Henry Chen
  • Publication number: 20150131542
    Abstract: Systems and methods for improving wireless access point communications are provided. Some embodiments contemplate filtering operations such that two or more radios can be used in the 5 GHz or 2.4 GHz band without interfering with each other. Some embodiments employ discrete Low Noise Amplifiers (LNA) and Power Amplifiers (PA) as well as frontend modules. In some examples, filtering may be primarily used on the receiving side to filter out other signals in 5 GHz before they are amplified by an external LNA or LNAs, e.g., as integrated in a WLAN chipset. Filtering may also be performed on the transmit side in some embodiments.
    Type: Application
    Filed: December 12, 2013
    Publication date: May 14, 2015
    Applicant: NetGear Inc.
    Inventors: Peiman AMINI, Joseph Amalan Arul EMMANUEL, Shun-Liang YU
  • Publication number: 20150118977
    Abstract: A radio frequency front end module is provided for a high power capability and a high signal band selectivity. The front end module includes an external filter and an integrated circuit coupled with the external filter via two external filter leads. The integrated circuit includes a transmit-receive switch, a power amplifier and a low noise amplifier. The transmit-receive switch alternates between coupling an antenna port to a transmit port and coupling the antenna port to a receive port. The power amplifier amplifies a modulated radio frequency signal. The low noise amplifier amplifies a received radio frequency signal when the antenna port is coupled to the receive port. The external filter can be replaced to adapt to various requirements of signal frequency bands, without the need of modifying the layout of the integrated circuit.
    Type: Application
    Filed: May 28, 2014
    Publication date: April 30, 2015
    Inventor: Joseph Amalan Arul EMMANUEL
  • Publication number: 20150103663
    Abstract: Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 16, 2015
    Inventors: Peiman AMINI, Joseph Amalan Arul EMMANUEL, Chia-Wei LIU
  • Publication number: 20150103730
    Abstract: Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 16, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Peiman AMINI, Chia-Wei LIU
  • Publication number: 20150103740
    Abstract: Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 16, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Peiman AMINI, Chia-Wei LIU
  • Publication number: 20150105121
    Abstract: Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 16, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Chia-Wei LIU, Peiman AMINI, Shun-Liang YU
  • Publication number: 20150098377
    Abstract: Techniques are disclosed for a wireless router or residential gateway to distinguish power-sensitive wireless sensors and provide separate treatments thereto for low power consumption connections. In some embodiments, a network device includes a wireless network circuit, and control circuitry coupled to the network circuit and configured to, upon receipt of a request of connection from a client, identify whether the client is power-sensitive. The network device can further cause, if the client is identified as power-sensitive, the power-sensitive client to connect using a low-power connection while maintaining a regular connection to other regular clients. The low-power connection can be operated on a first channel different from but in a same frequency band as a second channel on which the regular connection is operated.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 9, 2015
    Inventors: Peiman AMINI, Joseph Amalan Arul EMMANUEL, Arms YONGYUTH
  • Patent number: 8989244
    Abstract: A receiver is provided that receives signals from a device under test (DUT) for one or more modes of operation. For each mode, the system detects beacon transmission signals from the DUT, and counts the number of beacons for a period of time. If the count is not consistent with an expected count, e.g. a stored value, the system may preferably provide an output to indicate that there is a problem with the DUT. If the count is consistent with the expected count, the system may preferably perform further testing for other modes of operation. If the count output of the DUT is consistent with expected counts over each of the operation modes, the system may provide an indication that the DUT has passed the beacon tests.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 24, 2015
    Assignee: NETGEAR, Inc.
    Inventors: Joseph Amalan Arul Emmanuel, Jonathan M. Hummel, Shahrokh M. Zardoshti
  • Publication number: 20150009902
    Abstract: Systems and methods for controlling the transmit power and the receive sensitivity of an access point for achieving symmetric link balancing is described. When an access point operates with symmetric link performance, the access point does not inefficiently use available bandwidth for transmitting or re-transmitting to a client station that cannot communicate with the access point. Moreover, the access point does not back off transmissions due to activity of neighboring basic service sets when not needed. The receive sensitivity can be controlled using a hardware attenuator or software commands that adjust a programmable gain in a wireless local area network chipset used by the access point, or it can be controlled using adjustable levels in the software for processing or responding to packets.
    Type: Application
    Filed: November 27, 2013
    Publication date: January 8, 2015
    Inventors: Joseph Amalan Arul EMMANUEL, Peiman AMINI
  • Publication number: 20140369272
    Abstract: Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations between the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
    Type: Application
    Filed: November 25, 2013
    Publication date: December 18, 2014
    Inventors: Peiman Amini, Arms Yongyuth, Joseph Amalan Arul Emmanuel
  • Publication number: 20140369271
    Abstract: Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations among the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
    Type: Application
    Filed: November 25, 2013
    Publication date: December 18, 2014
    Inventors: Peiman Amini, Arms Yongyuth, Joseph Amalan Arul Emmanuel
  • Publication number: 20140369273
    Abstract: Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations between the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
    Type: Application
    Filed: November 25, 2013
    Publication date: December 18, 2014
    Inventors: Peiman Amini, Arms Yongyuth, Joseph Amalan Arul Emmanuel
  • Publication number: 20140370826
    Abstract: Techniques are disclosed for reducing interference, in a network device, among multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, a network device includes a first and a second wireless network circuit. The network circuits operate in a same radio frequency band and are collocated. The second network circuit is assigned a higher priority than the first network circuit. The device further includes a coexistence controller coupled to the network circuits via a communication bus and configured to selectively suppress transmitting operations of the first network circuit during receiving operations of the second network circuit. Among other benefits, the embodiments can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
    Type: Application
    Filed: November 25, 2013
    Publication date: December 18, 2014
    Inventors: Peiman AMINI, Arms Yongyuth, Steve Skeoch, Joseph Amalan Arul Emmanuel
  • Publication number: 20140266936
    Abstract: Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: NETGEAR, INC.
    Inventors: Joseph Amalan Arul EMMANUEL, Chia-Wei LIU