Patents by Inventor Joseph B. Eckel

Joseph B. Eckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033699
    Abstract: Various embodiments disclosed relate to a shaped abrasive particle. The shaped abrasive particle includes a first non-planar continuous surface and a second non-planar continuous surface. The shaped abrasive particle further includes at least one sidewall or edge joining the first non-planar continuous surface and the second non-planar continuous surface. The shaped abrasive particle further includes one or more vertices. The shaped abrasive particle is configured to have a stable resting position on a substantially planar substrate, wherein at least one vertex is oriented in a substantially upward direction relative to the planar substrate.
    Type: Application
    Filed: December 4, 2019
    Publication date: February 3, 2022
    Inventors: Fay T. Salmon, Cory M. Arthur, David T. Buckley, Thomas J. Nelson, Joseph B. Eckel, Emily L. Bowen, Dwight D. Erickson, Wayne W. Maurer, Henry M. O'Callaghan
  • Patent number: 11229987
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20220001516
    Abstract: A coated abrasive belt (100) includes a belt backing (110) and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements (160) secured to at least a portion of a major surface of the belt backing (110) by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal (192) and vertical lines (194) of a rectangular grid pattern. Each abrasive element has at least two triangular abrasive platelets (130), each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the belt backing A first portion of the abrasive elements is arranged in alternating first rows (16) wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines (194).
    Type: Application
    Filed: November 14, 2019
    Publication date: January 6, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Publication number: 20220001514
    Abstract: According to various embodiment of the present disclosure, a bonded abrasive article precursor includes a curable composition. The curable composition includes a curative component. The curable composition further includes one or more resins. The curable composition further includes a plurality of shaped abrasive particles. The curable composition is curable in an amount of time in a range of from about 0.1 minutes to about 20 minutes at a temperature of about 25° C. to about 160° C.
    Type: Application
    Filed: December 16, 2019
    Publication date: January 6, 2022
    Inventors: Brett A. Beiermann, Aaron K. Nienaber, Joseph B. Eckel, Maiken Givot, Thomas J. Nelson, Robinette S. Alkhas, Dwight D. Erickson, Loc X. Van, Melissa C. Schillo-Armstrong
  • Publication number: 20210402567
    Abstract: According to one embodiment, a method of making an abrasive article is disclosed. The method can comprise: disposing a layer of a curable composition into a mold having a circular mold cavity with a central hub, wherein the circular mold cavity has an outer circumference and a rotational axis extending through the central hub, and wherein the curable composition is comprised of at least some magnetizable abrasive particles dispersed therein; and varying a magnetic field relative to the curable composition such that a majority of the magnetizable abrasive particles are at least one of oriented and aligned in a non-random manner relative to a surface of the mold; and at least partially curing the curable composition to provide the bonded abrasive article.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Ronald D. Jesme, Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Vincent R. Jansen, Samad Javid
  • Publication number: 20210388250
    Abstract: Various embodiments disclosed relate to a shaped abrasive particle. The shaped abrasive particle includes at least four major faces and at least six edges joining the four major faces. One of the at least four major faces is a first rake face, a second of the at least four major faces is a second rake face. The first and second rake faces are predominantly joined along only one common edge. A dihedral angle between the first rake face and the second rake face is in a range of from about 71 degrees to about 170 degrees.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 16, 2021
    Inventors: Ronald D. Jesme, Joseph B. Eckel, Thomas J. Nelson, Aaron K. Nienaber
  • Publication number: 20210370473
    Abstract: A coated abrasive disc includes an abrasive layer disposed on a major surface of a disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed from the major surface at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern, wherein the intersections of the rectangular grid pattern have an areal density defined by C/(LT) where C is a unitless coverage factor having a value between 0.1 and 0.4, L is the average major triangular abrasive platelet side length and T is the average triangular abrasive platelet thickness. At least 70 percent of the intersections have a triangular abrasive platelet disposed thereat.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 2, 2021
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20210332277
    Abstract: According to one embodiment, a method can comprise: providing a tool that has a first portion that comprises a first material and a second portion that comprises a second material, wherein the second material differs from the first material and the tool is subject to a magnetic field, and wherein the first material and the second material are provided such that the magnetic field is relatively stronger at and adjacent the first portion relative to the magnetic field at and adjacent the second portion; positioning a surface adjacent to the tool so as to be subject to the magnetic field; and disposing magnetizable abrasive particles on the surface, wherein the magnetizable abrasive particles are attracted to an area on the surface adjacent the first portion where the magnetic field is relatively stronger so as to provide for at least one of a desired orientation, placement and alignment of a majority of the magnetizable abrasive particles on the surface.
    Type: Application
    Filed: January 10, 2018
    Publication date: October 28, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Brian D. Goers, Samad Javid, Ronald D. Jesme, Badri Veeraraghavan, Sheryl A. Vanasse
  • Patent number: 11141835
    Abstract: According to one embodiment, a method of making an abrasive article is disclosed. The method can comprise: providing a surface; disposing magnetizable abrasive particles on the surface; and varying a magnetic field relative to the magnetizable abrasive particles to impart a non-random orientation and/or alignment to the magnetizable abrasive particles relative to the surface.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 12, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Ronald D. Jesme, Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Vincent R. Jansen, Samad Javid
  • Publication number: 20210308825
    Abstract: A system for monitoring one or more of an abrading tool, a consumable abrasive product and a workpiece, the system can optionally comprise: a data storage device; a sensor; a communication unit; a consumable abrasive product that is attachable to and detachable from the abrading tool and configured to abrade the workpiece; a computing system comprising one or more computing devices configured to: receive a first data from the communication unit regarding the sensor, the first data indicative of at least one operating parameter of one or more of the abrading tool, the consumable abrasive product and the workpiece; identify if the at least one operating parameter falls outside a predetermined operating parameter range; and if the at least one operating parameter falls outside a predetermined operating parameter range, store a second data based upon the first data in the data storage device.
    Type: Application
    Filed: August 15, 2019
    Publication date: October 7, 2021
    Inventors: Nicholas T. Gabriel, Ankit Mahajan, Joseph B. Eckel, Mikhail L. Pekurovsky, Roger W. Barton
  • Publication number: 20210294002
    Abstract: According to one embodiment, a method of making an optical film for control of light comprising: positioning a first mixture on a substrate, wherein the first mixture comprises a first plurality of magnetizable particles dispersed in a first resin, assembling the first plurality of magnetizable particles into a desired structure for the control of the light by rotating modulation of at least a first magnetic field relative to the first plurality of magnetizable particles, and vitrifying the first resin while the first plurality of magnetizable particles are in the desired structure.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 23, 2021
    Inventors: Mark B. O'Neill, Gary E. Gaides, Tri D. Pham, Aaron K. Nienaber, Ronald D. Jesme, Joseph B. Eckel, Shawn C. Dodds, Bert T. Chien
  • Publication number: 20210273126
    Abstract: According to one embodiment, a solar device, comprises one or more photovoltaic cells disposed in an encapsulant and a light control structure including a louver film having a series of louver structures, wherein each louver structure includes one or more groupings of a plurality magnetizable particles aligned at least in a first orientation dispersed in a binding matrix. The light control structure substantially transmits light incident at a first angle and substantially limits transmission of light incident at a second angle. Each louver structure is spaced apart from an adjacent louver structure, wherein each louver structure is substantially aligned in a plane substantially parallel to an adjacent louver structure.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 2, 2021
    Inventors: Mark B. O'Neill, Gary E. Gaides, Joseph B. Eckel, Aaron K. Nienaber, Ronald D. Jesme, Mark D. Weigel
  • Publication number: 20210268627
    Abstract: The present disclosure provides an abrasive article (10). The abrasive article (10) has a direction of use, a y-axis and a z-axis orthogonal to the y-axis and the direction of use. The abrasive article (10) further includes a backing (12) and shaped abrasive particles attached to the backing. About 5% to about 100% of the shaped abrasive particles (14) independently include a first side surface (16), a second side surface (18) opposed to the first side surface (16), a leading surface (20) connected to the first side surface (16) at a first edge (24) and connected to the second side surface (18) at a second edge (26), a rake angle (30) between the backing (12) and the leading surface (20) in a range of from about 10 degrees to about 110 degrees, and a z-direction rotational angle (50) between a line (52) intersecting the first edge (16) and second edge (18) and the direction of use (22) of the abrasive article (10) in a range of from about 10 degrees to about 170 degrees.
    Type: Application
    Filed: April 17, 2019
    Publication date: September 2, 2021
    Inventors: Negus B. Adefris, Scott R. Culler, Joseph B. Eckel, John D. Haas, Thomas J. Nelson, Aaron K. Nienaber, Steven J. Keipert, Vincent Jusuf, Fay T. Salmon, Yuzhi Xia, Michael J. Wald
  • Publication number: 20210237229
    Abstract: A method of making a coated abrasive article includes at least four steps. In step a), a web is provided comprising a backing having a make layer precursor disposed thereon. The web moves along a web path in a downweb direction, and the web has a crossweb direction that is perpendicular to the downweb direction. The make layer precursor comprises a first curable binder precursor; In step b) an applied magnetic field is provided. In step c), a mixture of magnetizable non-magnetizable particles is passed through the applied magnetic field and onto the make layer precursor such that the magnetizable and non-magnetizable particles are predominantly deposited onto the web in a drop zone according to a predetermined order. At least one of the magnetizable particles or the non-magnetizable particles comprises abrasive particles. In step d), the make layer precursor is at least partially cured to provide a make layer.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 5, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Ronald D. Jesme, Jaime A. Martinez
  • Patent number: 11072732
    Abstract: A magnetizable abrasive particle comprises a ceramic body having an outer surface and a magnetizable layer disposed on a portion, but not the entirety, of the outer surface. The ceramic body comprises a platelet having two opposed major facets connected to each other by a plurality of side facets. The magnetizable layer completely covers one of the two opposed major facets, and the magnetizable layer has a magnetic dipole oriented perpendicular or parallel to the facet which it completely covers. A plurality of the magnetizable abrasive particles, and abrasive articles including them are also disclosed. Methods of making the foregoing are also disclosed.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 27, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Jaime A. Martinez, Eli A. Davis, Louis S. Moren
  • Publication number: 20210178554
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Application
    Filed: August 15, 2019
    Publication date: June 17, 2021
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20210129292
    Abstract: According to one embodiment, a method of making an abrasive layer on a backing is disclosed. The method can comprise: providing dispensable magnetizable abrasive particles and a distribution tool, wherein the distribution tool is configured to receive the magnetizable abrasive particles therein, and wherein the distribution tool is configured to impart at least one of a predetermined orientation and alignment of the magnetizable abrasive particles, positioning a backing adjacent to the distribution tool and spaced therefrom by a gap, applying a magnetic field to at least the backing and a portion of the gap between the backing and the distribution tool, and transferring the magnetizable abrasive particles from the distribution tool to a first major surface of the backing, wherein the magnetic field is applied during the transfer of the magnetizable abrasive particles.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 6, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Ronald D. Jesme, Samad Javid
  • Patent number: 10947432
    Abstract: A method of making magnetizable abrasive particles includes: moistening the outer surfaces of ceramic particles with waterglass to provide moistened ceramic particles. Magnetizable particles are contacted with the moistened ceramic particles to provide powder-coated ceramic particles. The powder-coated ceramic particles are heated to at least a temperature sufficient to bond the magnetizable particles of the powder-coated ceramic particles to the respective ceramic particles thereby providing the magnetizable abrasive particles. On a respective basis, each magnetizable abrasive particle comprises a respective ceramic particle having a magnetizable particles bonded thereto.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 16, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Anderson, Thomas J. Nelson, Mark A. Lukowski, Louis S. Moren, Don V. West
  • Publication number: 20210046614
    Abstract: A method of making a coated abrasive article is disclosed. A backing has first and second opposed major surfaces. A make layer precursor is disposed on at least a portion of the first major surface. Magnetizable abrasive particles are disposed onto the make layer precursor while under the influence of an applied magnetic field. At least a majority the magnetizable abrasive particles extend away from the make layer precursor in an orientation substantially aligned with the applied magnetic field. Non-magnetizable particles are then disposed onto the make layer precursor while under the influence of the applied magnetic field. At least some of the non-magnetizable particles are disposed between the magnetizable abrasive particles. Then, the make layer precursor is at least partially cured to provide a make layer.
    Type: Application
    Filed: April 16, 2019
    Publication date: February 18, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel
  • Publication number: 20210046612
    Abstract: A method of applying magnetizable particles onto an adherent web includes several steps. Step a) provides a magnetizable particle coating apparatus comprising a downward sloping dispensing surface at least partially disposed within an applied magnetic field. Step b) disposes an adherent web between upper and lower magnetic members and beneath the downward sloping dispensing surface, wherein the web comprises a backing having a curable binder precursor layer disposed on a major surface thereof. Step c) disposes magnetizable particles onto at least a portion of the downward sloping dispensing surface within the applied magnetic field, and subsequently disposed onto the curable binder precursor layer while the adherent web is advanced from an upweb position to a downweb position. Step d) at least partially cures the curable binder precursor layer to fix the orientations of the magnetizable particles.
    Type: Application
    Filed: April 16, 2019
    Publication date: February 18, 2021
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Ronald D. Jesme