Patents by Inventor Joseph Gerard Schultz

Joseph Gerard Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072739
    Abstract: A power amplifier device includes a substrate formed from a stack of alternating dielectric and patterned conductive layers and conductive vias electrically connecting the patterned conductive layers. The substrate has a set of substrate die contacts exposed at a first substrate surface, and an air cavity extending into the substrate through a portion of the first substrate surface that is located between the set of substrate die contacts. A power transistor die has first and second die contacts at a first die surface, which are connected to the substrate die contacts. The power transistor die also includes an integrated transistor in an active area of the die. The integrated transistor includes a control terminal coupled to the first die contact, and a first current conducting terminal coupled to the second die contact. The active area is aligned with the first air cavity.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Kevin Kim, Vikas Shilimkar, Joseph Gerard Schultz
  • Publication number: 20240071960
    Abstract: A power amplifier device includes a substrate, a power transistor die, and one or more surface mount components. The substrate has substrate die contacts exposed at a first substrate surface, and additional substrate contacts exposed at a second substrate surface. The power transistor die includes an integrated transistor. The transistor includes a control terminal and a first current conducting terminal coupled, respectively, to first and second die contacts at the first die surface, and a second current conducting terminal coupled to a third die contact at a second die surface. The surface-mount components are connected to the additional substrate components, and the surface-mount components are electrically coupled through the substrate to the first and second die contacts. The power amplifier device also includes an encapsulation material layer covering the surface-mount components and the second substrate surface.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Kevin Kim, Vikas Shilimkar, Joseph Gerard Schultz
  • Publication number: 20240072740
    Abstract: A power amplifier device includes first and second power transistor dies and a substrate. Each die includes an elongated bondpad and an integrated transistor with a terminal that is coupled to the elongated bondpad. The substrate is formed from a stack of multiple dielectric layers and multiple patterned conductive layers in an alternating arrangement, and a plurality of conductive vias electrically coupling portions of the conductive layers. The substrate includes elongated first and second die contacts exposed at a first substrate surface and connected to the first and second elongated bondpads, respectively. The substrate also includes a conductive structure connected between the first and second die contacts. The conductive structure is formed from portions of the patterned conductive layers and at least two vias of the plurality of conductive vias.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Kevin Kim, Vikas Shilimkar, Joseph Gerard Schultz
  • Publication number: 20230361726
    Abstract: An RF amplifier includes at least one harmonic trap filter with an array of shunt filter legs having a non-uniform resonance frequency distribution. The harmonic trap filter is configured to suppress frequencies in a suppression frequency range that includes harmonic frequencies of carrier frequencies in a range of carrier frequencies. Each of the shunt filter legs includes a capacitor and inductor coupled in series, and an intermediate node coupled between the capacitor and the inductor. Each intermediate node of the shunt filter leg is coupled to at least one other intermediate node of another shunt filter leg of the filter with a dampening resistor. Shunt filters at or near edges of the array are configured to have lower resonance frequencies than those at or near the center of the array to suppress excess current flow at edges of the RF amplifier.
    Type: Application
    Filed: February 28, 2023
    Publication date: November 9, 2023
    Inventors: Joseph Gerard Schultz, Kevin Kim, Jeffrey Kevin Jones, Vikas Shilimkar, Olivier Lembeye
  • Patent number: 11695375
    Abstract: An amplifier includes a semiconductor die and a substrate that is distinct from the semiconductor die. The semiconductor die includes a III-V semiconductor substrate, a first RF signal input terminal, a first RF signal output terminal, and a transistor (e.g., a GaN FET). The transistor has a control terminal electrically coupled to the first RF signal input terminal, and a current-carrying terminal electrically coupled to the first RF signal output terminal. The substrate includes a second RF signal input terminal, a second RF signal output terminal, circuitry coupled between the second RF signal input terminal and the second RF signal output terminal, and an electrostatic discharge (ESD) protection circuit. The amplifier also includes a connection electrically coupled between the ESD protection circuit and the control terminal of the transistor. The substrate may be another semiconductor die (e.g., with a driver transistor and/or impedance matching circuitry) or an integrated passive device.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: July 4, 2023
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Yu-Ting David Wu, Nick Yang
  • Patent number: 11558018
    Abstract: Integrated circuits, such as power amplifier integrated circuits, are disclosed containing compact-footprint, vertically-integrated capacitor-avalanche diode (AD) structures. In embodiments, the integrated circuit includes a semiconductor substrate, a metal layer system, and a vertically-integrated capacitor-AD structure. The metal layer system includes, in turn, a body of dielectric material in which a plurality of patterned metal layers are located. The vertically-integrated capacitor-AD structure includes a first AD formed, at least in part, by patterned portions of the first patterned metal layer. A first metal-insulator-metal (MIM) capacitor is also formed in the metal layer system and at least partially overlaps with the first AD, as taken along a vertical axis orthogonal to the principal surface of the semiconductor substrate.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: January 17, 2023
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Kevin Kim
  • Publication number: 20220399856
    Abstract: A Doherty amplifier includes a peaking amplifier, a carrier amplifier, and a combining node electrically connected to the carrier amplifier and the peaking amplifier. The Doherty amplifier includes a harmonic control circuit coupled to the combining node. The harmonic control circuit includes an inductor and a capacitor and the inductor and capacitor are connected in series between the first current conducting terminal and a ground reference node. An inductance value of the inductor of the harmonic control circuit and a capacitance value of the capacitor of the harmonic control circuit are selected to terminate second order harmonic components of a fundamental frequency of a signal generated by the carrier amplifier.
    Type: Application
    Filed: June 10, 2021
    Publication date: December 15, 2022
    Inventors: Nick Yang, Yu-Ting David Wu, Joseph Gerard Schultz
  • Patent number: 11522506
    Abstract: Various embodiments relate to an integrated circuit including a transistor device having input and output terminals, and an inductor-capacitor (LC) circuit coupled to one of the terminals of the transistor device. The LC circuit includes a capacitor having a top plate and a bottom plate, a inductor having a coil structure, and a connector configured to couple the inductor and an interior portion the top plate of the capacitor. The inductor at least partially overlaps the capacitor.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: December 6, 2022
    Assignee: NXP B.V.
    Inventors: Vikas Shilimkar, Kevin Kim, Joseph Gerard Schultz
  • Publication number: 20220182022
    Abstract: An amplifier includes a semiconductor die and a substrate that is distinct from the semiconductor die. The semiconductor die includes a III-V semiconductor substrate, a first RF signal input terminal, a first RF signal output terminal, and a transistor (e.g., a GaN FET). The transistor has a control terminal electrically coupled to the first RF signal input terminal, and a current-carrying terminal electrically coupled to the first RF signal output terminal. The substrate includes a second RF signal input terminal, a second RF signal output terminal, circuitry coupled between the second RF signal input terminal and the second RF signal output terminal, and an electrostatic discharge (ESD) protection circuit. The amplifier also includes a connection electrically coupled between the ESD protection circuit and the control terminal of the transistor. The substrate may be another semiconductor die (e.g., with a driver transistor and/or impedance matching circuitry) or an integrated passive device.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Inventors: Joseph Gerard Schultz, Yu-Ting David Wu, Nick Yang
  • Publication number: 20220182023
    Abstract: An amplifier includes a semiconductor die and a substrate that is distinct from the semiconductor die. The semiconductor die includes a first RF signal input terminal, a first RF signal output terminal, and a transistor. The transistor has a control terminal electrically coupled to the first RF signal input terminal, and a current-carrying terminal electrically coupled to the first RF signal output terminal. The substrate includes a second RF signal input terminal, a second RF signal output terminal, circuitry coupled between the second RF signal input terminal and the second RF signal output terminal, and an electrostatic discharge (ESD) protection circuit. The amplifier also includes a connection electrically coupled between the ESD protection circuit and the control terminal of the transistor. The substrate may be another semiconductor die (e.g., with a driver transistor and/or impedance matching circuitry) or an integrated passive device.
    Type: Application
    Filed: May 28, 2021
    Publication date: June 9, 2022
    Inventors: David Cobb Burdeaux, Joseph Gerard Schultz, Kimberly Foxx
  • Patent number: 11277100
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: March 15, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 11223326
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 11, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 11145609
    Abstract: An embodiment of a Doherty amplifier includes a module substrate, first and second surface-mount devices coupled to a top surface of the module substrate, and an impedance inverter line assembly. The first and second surface-mount devices include first and second amplifier dies, respectively. The impedance inverter line assembly is electrically connected between outputs of the first and second amplifier dies. The impedance inverter line assembly includes an impedance inverter line coupled to the module substrate, a first lead of the first surface-mount device coupled between the first amplifier die output and a proximal end of the impedance inverter line, and a second lead of the second surface-mount device coupled between the second amplifier die output and a distal end of the impedance inverter line. According to a further embodiment, the impedance inverter line assembly has a 90 degree electrical length at a fundamental operational frequency of the Doherty amplifier.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: October 12, 2021
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Jeffrey Kevin Jones, Elie A. Maalouf, Yu-Ting David Wu, Nick Yang
  • Publication number: 20210242840
    Abstract: Various embodiments relate to an integrated circuit including a transistor device having input and output terminals, and an inductor-capacitor (LC) circuit coupled to one of the terminals of the transistor device. The LC circuit includes a capacitor having a top plate and a bottom plate, a inductor having a coil structure, and a connector configured to couple the inductor and an interior portion the top plate of the capacitor. The inductor at least partially overlaps the capacitor.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 5, 2021
    Inventors: Vikas SHILIMKAR, Kevin KIM, Joseph Gerard SCHULTZ
  • Publication number: 20210234516
    Abstract: Integrated circuits, such as power amplifier integrated circuits, are disclosed containing compact-footprint, vertically-integrated capacitor-avalanche diode (AD) structures. In embodiments, the integrated circuit includes a semiconductor substrate, a metal layer system, and a vertically-integrated capacitor-AD structure. The metal layer system includes, in turn, a body of dielectric material in which a plurality of patterned metal layers are located. The vertically-integrated capacitor-AD structure includes a first AD formed, at least in part, by patterned portions of the first patterned metal layer. A first metal-insulator-metal (MIM) capacitor is also formed in the metal layer system and at least partially overlaps with the first AD, as taken along a vertical axis orthogonal to the principal surface of the semiconductor substrate.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 29, 2021
    Inventors: Joseph Gerard Schultz, Kevin Kim
  • Publication number: 20210175186
    Abstract: An embodiment of a Doherty amplifier includes a module substrate, first and second surface-mount devices coupled to a top surface of the module substrate, and an impedance inverter line assembly. The first and second surface-mount devices include first and second amplifier dies, respectively. The impedance inverter line assembly is electrically connected between outputs of the first and second amplifier dies. The impedance inverter line assembly includes an impedance inverter line coupled to the module substrate, a first lead of the first surface-mount device coupled between the first amplifier die output and a proximal end of the impedance inverter line, and a second lead of the second surface-mount device coupled between the second amplifier die output and a distal end of the impedance inverter line. According to a further embodiment, the impedance inverter line assembly has a 90 degree electrical length at a fundamental operational frequency of the Doherty amplifier.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Inventors: Joseph Gerard Schultz, Jeffrey Kevin Jones, Elie A. Maalouf, Yu-Ting David Wu, Nick Yang
  • Publication number: 20210013837
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 14, 2021
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Publication number: 20200389130
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Application
    Filed: July 24, 2020
    Publication date: December 10, 2020
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 10763792
    Abstract: A multiple-stage amplifier includes a driver stage die and a final stage die. The driver stage die includes a first type of semiconductor substrate (e.g., a silicon substrate), a first transistor, and an integrated portion of an interstage impedance matching circuit. A control terminal of the first transistor is electrically coupled to an RF signal input terminal of the driver stage die, and the integrated portion of the interstage impedance matching circuit is electrically coupled between a current-carrying terminal of the first transistor and an RF signal output terminal of the driver stage die. The second die includes a III-V semiconductor substrate (e.g., a GaN substrate) and a second transistor. A connection, which is a non-integrated portion of the interstage impedance matching circuit, is electrically coupled between the RF signal output terminal of the driver stage die and an RF signal input terminal of the final stage die.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 1, 2020
    Assignee: NXP USA, Inc.
    Inventors: Joseph Gerard Schultz, Enver Krvavac, Olivier Lembeye, Cedric Cassan, Kevin Kim, Jeffrey Kevin Jones
  • Patent number: 10594266
    Abstract: Embodiments of a multiple-path amplifier (e.g., a Doherty amplifier) and a module housing the amplifier include a first amplifier (or first power transistor die) with a first output terminal, a second amplifier (or second power transistor die) with a second output terminal, and an impedance inverter line assembly electrically connected between the first and second output terminals. The impedance inverter line assembly includes a first transmission line and a surface mount component connected in series between the first and second output terminals. In various embodiments, the surface mount component is selected from a fixed-value capacitor, a fixed-value inductor, a tunable capacitor, a tunable inductor, and a tunable passive component network.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 17, 2020
    Assignee: NXP USA, Inc.
    Inventors: James Krehbiel, Nick Yang, Joseph Gerard Schultz, Enver Krvavac, Yu-Ting David Wu