Patents by Inventor Joseph Kuczynski

Joseph Kuczynski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10342122
    Abstract: An apparatus is provided with a component configured to be operatively coupled to an interface. In a first state, the component is mechanically and/or electrically attached to a substrate. Exposure of the interface to a thermal event that meets or exceeds a first temperature the resilient material is subject to undergo a state change to a second state. The state change includes a physical transformation of the interface, and includes a position change of the component.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bruce J. Chamberlin, Scott B. King, Joseph Kuczynski, David J. Russell
  • Publication number: 20190200463
    Abstract: A multi-layer printed circuit board (PCB) includes a laminate between a PCB heating core and a PCB signal core. The PCB heating core includes an electrically conductive resistive heating element upon a first core substrate. During a lamination cure PCB fabrication stage, a platen contacts the PCB and a power supply is electrically connected to the resistive heating element. The laminate is cured with heat transferred by the platen and heat from the resistive heating element. The PCB heating core may be located within an inner layer of the multi-layer PCB to normalize a thermal gradient across the multi-layer PCB that may otherwise occur during the laminate cure fabrication stage. As a result of the normalized thermal gradient, the degree of laminate cure and material characteristics of the cured laminate material are more consistent throughout the multi-layer PCB thickness.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 27, 2019
    Inventors: Eric J. Campbell, Joseph Kuczynski, Timothy J. Tofil
  • Patent number: 10328535
    Abstract: A self-heating solder flux material includes a solder flux material and a multi-compartment microcapsule. The solder flux material includes a solvent carrier, and the multi-compartment microcapsule includes a first compartment, a second compartment, and an isolating structure. The first compartment contains a first reactant, and the second compartment contains a second reactant. The isolating structure separates the first compartment from the second compartment. The isolating structure is adapted to rupture in response to a stimulus. Rupture of the isolating structure results in an exothermic reaction between the first reactant and the second reactant. The exothermic reaction generates heat to volatilize the solvent carrier.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Sarah K. Czaplewski, Joseph Kuczynski, Timothy J. Tofil
  • Patent number: 10334741
    Abstract: A triggering condition is applied to a conductive polymer positioned in a drilled hole in a printed circuit board. The applied triggering condition causes the polymer to vertically expand within the drilled hole such that the expanded polymer creates an electrically conductive path between contact pads located in different layers of the printed circuit board.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Timothy Tofil, Jeffrey N. Judd, Matthew Doyle, Scott D. Strand
  • Patent number: 10330236
    Abstract: In an example, a method of repairing a pipeline includes isolating a section of a pipeline that includes a leak site. The method includes flooding the section of the pipeline with a plug formulation that includes artificial platelets and an ultraviolet (UV) photoinitiator. The section may be pressurized to induce migration of the artificial platelets to the leak site. The method also includes draining excess plug formulation from the section of the pipeline. The method further includes exposing the UV photoinitiator to UV light to form a gas impermeable seal at the leak site.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sarah K. Czaplewski, Joseph Kuczynski, Melissa K. Miller, Jing Zhang
  • Patent number: 10329488
    Abstract: A flame retardant lysine-based derivative, a process for forming a flame retardant lysine-based derivative, and an article of manufacture comprising a flame retardant lysine-based derivative are disclosed. The flame retardant lysine-derived molecule can be synthesized from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety. A flame retardant proline-based derivative, a process for forming a flame retardant proline-based derivative, and an article of manufacture comprising a flame retardant proline-based derivative are also disclosed. The flame retardant proline-derived molecule can be synthesized from a bio-based source and can have at least one phosphoryl or phosphonyl moiety.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Scott B. King, Brandon M. Kobilka, Joseph Kuczynski, Jason T. Wertz
  • Patent number: 10331911
    Abstract: An electromagnetic radiation (EMR) receiver is located upon a printed circuit board (PCB) glass security layer. EMR flux is transmitted by the glass security layer and received by the EMR receiver. When the PCB is subject to a tamper event the EMR transmitted by glass security layer is increased. A monitoring device that monitors the flux or interference pattern of the EMR received by the EMR receiver detects a change in flux or interference pattern and passes a tamper signal to one or more computer system devices to respond to the tamper event. For example, one or more cryptographic adapter card or computer system functions or secured crypto components may be disabled.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Phillip V. Mann, Kevin M. O'Connell
  • Publication number: 20190191558
    Abstract: A process of manufacturing a layup for multiple-layer printed circuit board manufacturing is formed according to a process that includes selectively applying a dielectric resin to a high resin demand region of a circuitized core layer without applying the dielectric resin to another region of the circuitized core layer. The process also includes partially curing the dielectric resin prior to performing a lamination cycle to form the multiple layer printed circuit board that includes the circuitized core layer within the high resin demand region. The process further includes forming a layup that includes a layer of pre-impregnated (prepreg) material adjacent to the partially cured dielectric resin within the high resin demand region of the circuitized core layer.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: BRUCE J. CHAMBERLIN, MATTHEW S. KELLY, SCOTT B. KING, JOSEPH KUCZYNSKI
  • Publication number: 20190187117
    Abstract: Methods and systems for detecting environmental contaminants is described. In an embodiment, a method includes macerating and extracting a sample; reacting a first polymerizable compound with the sample to form a second mixture comprising a second polymerizable compound; adding an initiator to the second mixture comprising the second polymerizable compound; performing a polymerization reaction on the second mixture comprising the second polymerizable compound to form a third mixture comprising a precipitate; and performing a turbidimetric analysis on the third mixture comprising the precipitate. In another embodiment, a method includes macerating and extracting a sample; reacting a first mixture comprising the functionalized polythiophene compound and the sample to form a second mixture comprising a second functionalized polythiophene compound; performing a colorimetric analysis on the second mixture comprising the second functionalized polythiophene compound.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventors: Joseph KUCZYNSKI, Marvin M. MISGEN, Debra A. NEUMAN-HORN, Kevin J. PRZYBYLSKI, Joseph F. PRISCO, Brandon M. KOBILKA
  • Publication number: 20190185326
    Abstract: A photo-absorbing composition having a structure from the group consisting of wherein DASM is a small molecule comprising one or more electron donor portions and one or more electron acceptor portions and NG is a nanographene structure, and m, n, and o are integers greater than or equal to 1.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Inventors: Brandon M. KOBILKA, Jason T. WERTZ, Joseph KUCZYNSKI, Scott B. KING
  • Publication number: 20190185497
    Abstract: A pinene-based flame retardant compound, a process for forming a flame retardant polymer, and an article of manufacture comprising a material that contains a pinene-based flame retardant polymer are disclosed. The pinene-based flame retardant compound includes a pinene derivative core and at least one flame retardant substituent having a phosphorus-based moiety. The process for forming the flame retardant polymer includes obtaining pinene, forming a derivative of pinene, obtaining a phosphorus-based compound, reacting the phosphorus-based compound and the pinene derivative to form a pinene-based flame retardant compound, and incorporating the pinene-based flame retardant compound into a polymer to form the pinene-based flame retardant polymer.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Inventors: Brandon M. Kobilka, Joseph Kuczynski, Jacob T. Porter, Jason T. Wertz
  • Publication number: 20190191559
    Abstract: A process of manufacturing a multiple-layer printed circuit board includes selectively applying a dielectric resin to a region of a circuitized core layer. The process also includes partially curing the dielectric resin prior to performing a lamination cycle to form the multiple-layer printed circuit board that includes the circuitized core layer.
    Type: Application
    Filed: July 6, 2018
    Publication date: June 20, 2019
    Inventors: BRUCE J. CHAMBERLIN, MATTHEW S. KELLY, SCOTT B. KING, JOSEPH KUCZYNSKI
  • Patent number: 10325121
    Abstract: To provide for a physical security mechanism that forms a complete envelope of protection around the cryptographic module to detect and respond to an unauthorized attempt at physical access, a tamper sensing encapsulant generally encapsulates the cryptographic module. The tamper sensing encapsulant includes a first shape actuation layer associated with an electrically conductive first trace element and a second shape actuation layer associated with an electrically conductive second trace element. The first shape actuation layer is positioned against the second shape actuation layer such that the first trace element and the second trace element do not physically touch at an operating temperature of the cryptographic module and do physically touch when the first shape actuation layer and the second shape actuation layer are thermally loaded. Upon first trace element and the second trace element touching, a circuit is formed that disables the cryptographic module.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sarah K. Czaplewski, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
  • Patent number: 10327336
    Abstract: In an example, a dry film solder mask (DFSM) composite laminate material is disclosed. The DFSM composite laminate material includes a printed circuit board (PCB) laminate material, a cyclic compound chemically bonded to the PCB laminate material, and a DFSM material. The DFSM material is reversibly bonded to the PCB laminate material via the cyclic compound.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sarah K. Czaplewski, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
  • Publication number: 20190177062
    Abstract: In an embodiment, a polymer includes less than 99.5 percent by weight of units derived from one or more olefin monomers. The polymer also includes greater than 0.5 percent by weight of units derived from one or more blue light absorbing monomers. In another embodiment, a method includes placing a heated parison of a polymer in a mold. The polymer is formed by polymerizing a mixture of one or more olefin monomers and one or more blue light absorbing monomers. The polymer has one or more blue light absorption characteristics. The method includes closing the mold. The method includes injecting gas into the parison to form a container in the mold. The method also includes removing the container from the mold.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Brandon M. KOBILKA, Joseph KUCZYNSKI, Jacob T. PORTER, Jason T. WERTZ
  • Publication number: 20190177619
    Abstract: A flame-retardant vanillin-derived small molecule, a process for forming a flame-retardant polymer, and an article of manufacture comprising a material that contains the flame-retardant vanillin-derived small molecule are disclosed. The flame-retardant vanillin-derived small molecule can be synthesized from vanillin obtained from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety with phenyl, allyl, or thioether substituents. The process for forming the flame-retardant polymer can include reacting a diol vanillin derivative and a flame-retardant phosphorus-based molecule to form the flame-retardant vanillin-derived small molecule, and binding the flame-retardant vanillin-derived small molecule to a polymer. The material in the article of manufacture can be flame-retardant, and contain the flame-retardant vanillin-derived small molecules. Examples of materials that can be in the article of manufacture can include resins, plastics, adhesives, polymers, etc.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Brandon M. Kobilka, Joseph Kuczynski, Jacob T. Porter, Jason T. Wertz
  • Publication number: 20190182967
    Abstract: A stubless via in printed wiring board may comprise one or more core layers. At least one core layer may be circuitized by including a copper trace and at least two other core layers may include copper laminations. The stubless via may further comprise one or more prepreg layers. The prepreg layers may be alternatively stacked between the core layers. the stubless via may further comprise a via. the via may be drilled through each of the alternatively stacked prepreg layers and core layers, exposing internal portions of the prepreg layers and core layers drilled through.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Joseph Kuczynski, Bruce Chamberlin, Scott B. King, Matthew Kelly
  • Publication number: 20190182968
    Abstract: A PWB may be drilled forming a via. The via may expose one or more internal portions of a core layer, a prepreg layer, and an anti-plate coating. A seed material may then be applied from a top portion of the PWB to the via, forming a seed layer in the via, the seed material not adhering to the anti-plate coating. Electroless metal may then be applied from the top portion of the PWB to the via, forming an electroless plate layer that adheres to the seed layer. Electrolytic copper may then be applied from the top portion of the PWB to the via, forming a copper layer that adheres to the electroless plate layer. A bottom portion of the electroless plate layer may then be removed.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Joseph Kuczynski, Bruce Chamberlin, Scott B. King, Matthew Kelly
  • Patent number: 10316165
    Abstract: A process a process of forming a non-halogenated flame retardant (FR) hindered amine light stabilizer (HALS) cross-linker is disclosed. The process includes forming a mixture that includes a first molecule having a hindered amine group. The first molecule corresponds to a functionalized 2,2,6,6-tetramethylpiperidine (TMP) molecule. The process also includes forming the non-halogenated FR HALS cross-linker via a chemical reaction of the first molecule a second molecule. The second molecule includes a phosphoryl group, a chloride group, and at least one cross-linkable (CL) moiety.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Scott B. King, Brandon M. Kobilka, Joseph Kuczynski, Jason T. Wertz
  • Patent number: 10316151
    Abstract: In an example, a thermal interface material includes a polymeric phase-change material.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Timothy C. Mauldin