Patents by Inventor Joseph M. DeSimone

Joseph M. DeSimone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040098090
    Abstract: Improved polymeric endoprostheses and methods of making endoprostheses are disclosed. Said endoprostheses exhibit improved overall compliance, selective regional compliance, and selective radial strength without varying the geometries of selected regions. Numerous other physical characteristics of said endoprostheses may be selectively varied during manufacture. Some embodiments may comprise one or more erodible material. Some embodiments may comprise one or more therapeutics incorporated into said endoprosthesis via a solvent in a supercritical state.
    Type: Application
    Filed: January 15, 2003
    Publication date: May 20, 2004
    Inventors: Michael S. Williams, Kevin D. Holbrook, Richard A. Glenn, Jeffrey A. Smith, Joseph M. DeSimone
  • Publication number: 20040096779
    Abstract: A process of forming a resist image in a microelectronic substrate, the process comprises the steps of: (a) providing a substrate having a polymer coating thereon, wherein the polymer is insoluble in water having a pH less than or equal to a specified pH (e.g., 7.0, 6, 5, or 4); then (b) imagewise exposing the coating to radiation such that exposed and unexposed coating portions are formed, with said exposed coating portions being soluble in water having a pH less than or equal to said specified pH7.0; and then (c) contacting said coating to a developing composition comprising carbon dioxide and water, said water having a specified pH less than or equal to 7.0 (and preferably a pH of about 2 or 3 to 4, 5 or 6; i.e. a specified pH less than or equal to 6, 5, or 4), so that said exposed coating portions are preferentially removed from the substrate as compared to said unexposed coating portions to form an image thereon.
    Type: Application
    Filed: November 14, 2002
    Publication date: May 20, 2004
    Inventor: Joseph M. DeSimone
  • Publication number: 20040098110
    Abstract: Novel endoprostheses comprising one or more photocurable materials are disclosed. Said endoprostheses may comprise regions wherein said photocurable materials are selectively disposed about said endoprosthesis and are cured according to desired parameters to achieve varying desired properties. Said properties may include but are not limited to cross-linking density, material density, modulus of elasticity, rate of erosion, extensibility, compressibility, mechanical strength, tensile strength, crystallinity, diffusion coefficient, and permeability.
    Type: Application
    Filed: January 15, 2003
    Publication date: May 20, 2004
    Inventors: Michael S. Williams, Kevin D. Holbrook, Richard A. Glenn, Jeffrey A. Smith, Joseph M. DeSimone
  • Publication number: 20040098120
    Abstract: Methods of producing biocompatible intraluminal prostheses are provided and include immersing polymeric material of an intraluminal prosthesis in a densified carbon dioxide composition under controlled conditions such that toxic materials are absorbed by the densified carbon dioxide composition.
    Type: Application
    Filed: September 15, 2003
    Publication date: May 20, 2004
    Inventors: Michael S. Williams, Joseph M. DeSimone
  • Publication number: 20040098106
    Abstract: Intraluminal prostheses and methods of impregnating same with pharmacological agents for delivery within a body of a subject are provided. An intraluminal prosthesis comprising polymeric material is immersed in a mixture of carrier fluid and pharmacological agent(s). The mixture of carrier fluid and pharmacological agent is pressurized for a time sufficient to cause the polymeric material of the intraluminal prosthesis to swell such that the carrier fluid and pharmacological agent at least partially penetrate the swollen polymeric material. Pressure is then removed such that the carrier fluid diffuses out of the swollen polymeric material and such that a predetermined amount of the pharmacological agent remains elutably trapped within the polymeric material.
    Type: Application
    Filed: September 15, 2003
    Publication date: May 20, 2004
    Inventors: Michael S. Williams, Joseph M. DeSimone
  • Publication number: 20040098100
    Abstract: Improved endoprostheses comprising a delivery configuration and a deployed configuration and methods of manufacture are disclosed. Some embodiments according to the invention comprise woven tubular structures and means for maintaining said structures in their expanded configurations. In one embodiment of the invention, locking elements disposed on one or more fibers maintain said endoprosthesis in its deployed configuration. In alternative embodiments, one or more axial members may maintain said endoprosthesis in its deployed configuration. In yet additional alternative embodiments, a chemical bond or thermocouple may maintain said endoprosthesis in its deployed configuration. Some embodiments according to the invention may comprise erodible material.
    Type: Application
    Filed: January 15, 2003
    Publication date: May 20, 2004
    Inventors: Michael S. Williams, Richard A. Glenn, Jeffrey A. Smith, Kevin D. Holbrook, Joseph M. DeSimone
  • Patent number: 6736996
    Abstract: A method of protecting a civil infrastructure substrate from the damaging effects of pollution, noxious fumes, weather, and the like. The method comprises (a) providing a composition comprising carbon dioxide and a fluorocarbon such as a fluoropolyether (preferably a perfluoropolyether) or a fluorocarbon elastomer, optionally having at least one anchoring group such as an amide covalently joined thereto, and then (b) applying that composition to the civil infrastructure substrate to form a protective coating thereon. The applying step is preferably carried out by spraying. Compositions useful for carrying out the process of the invention are also disclosed.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: May 18, 2004
    Assignees: North Carolina State University, University of North Carolina at Chapel Hill
    Inventors: Ruben G. Carbonell, Joseph M. DeSimone, Florence E. Henon
  • Patent number: 6716945
    Abstract: A method for forming a fluoropolymer comprises providing a reaction mixture comprising carbon dioxide, at least one fluoromonomer, and an initiator; and reacting the at least one fluoromonomer in the reaction mixture to form a fluoropolymer. The fluoropolymer has a multimodal molecular weight distribution.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: April 6, 2004
    Assignees: North Carolina State University, University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, George W. Roberts, Paul A. Charpentier
  • Publication number: 20040033316
    Abstract: A method of coating a substrate comprises immersing a surface portion of a substrate in a first phase comprising carbon dioxide and a coating component comprising a polymeric precursor; then withdrawing the substrate from the first phase into a distinct second phase so that the coating component is deposited on the surface portion; and then subjecting the substrate to conditions sufficient to polymerize the polymeric precursor and form a polymerized coating.
    Type: Application
    Filed: August 15, 2003
    Publication date: February 19, 2004
    Inventors: Ruben G. Carbonell, Joseph M. DeSimone, Brian J. Novick
  • Patent number: 6684525
    Abstract: A method of removing water from a composition of matter comprises contacting a first composition of matter comprising water with a second composition of matter comprising: (1) at least one surfactant comprising at least one phosphate group and (2) a solvent comprising carbon dioxide, wherein at least a portion of the surfactant is soluble in the solvent, such that the at least one surfactant removes at least a portion of the water from the first composition
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: February 3, 2004
    Assignees: University of North Carolina at Chapel Hill, North Carolina State University
    Inventors: Joseph M. DeSimone, Jason S. Keiper
  • Patent number: 6652920
    Abstract: A method of coating a substrate comprises immersing a surface portion of a substrate in a first phase comprising carbon dioxide and a coating component comprising a polymeric precursor; then withdrawing the substrate from the first phase into a distinct second phase so that the coating component is deposited on the surface portion; and then subjecting the substrate to conditions sufficient to polymerize the polymeric precursor and form a polymerized coating.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: November 25, 2003
    Assignees: North Carolina State University, The University of North Carolina at Chapel Hill
    Inventors: Ruben G. Carbonell, Joseph M. DeSimone, Brian J. Novick
  • Patent number: 6641678
    Abstract: A method of cleaning and removing water and entrained solutes during a manufacturing process from a microelectronic device such as a resist-coated semiconductor substrate, a MEM's device, or an optoelectronic device comprising the steps of: (a) providing a partially fabricated integrated circuit, MEM's device, or optoelectronic device having water and entrained solutes on the substrate; (b) providing a densified (e.g., liquid or supercritical) carbon dioxide drying composition, the cleaning composition comprising carbon dioxide, water, and, optionally but preferably, a cleaning adjunct; (c) immersing the surface portion in the densified carbon dioxide cleaning composition; and then (d) removing the cleaning composition from the surface portion.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: November 4, 2003
    Assignee: Micell Technologies, Inc.
    Inventors: James P. DeYoung, James B. McClain, Stephen M. Gross, Joseph M. DeSimone
  • Publication number: 20030194953
    Abstract: Methods and apparatus for chemical mechanical planarization of an article such as a semiconductor wafer use polishing slurries including a carbon dioxide solvent or a carbon dioxide-philic composition. A carbon dioxide cleaning solvent step and apparatus may also be employed.
    Type: Application
    Filed: May 29, 2003
    Publication date: October 16, 2003
    Inventors: James B. McClain, Joseph M. DeSimone
  • Publication number: 20030190818
    Abstract: A method of reducing undesired topographic features, increasing film density, and/or increasing adhesion to an underlying substrate in a polymer film formed on a microelectronic substrate, comprises: (a) providing a microelectronic substrate, the substrate having a polymer film deposited thereon; (b) contacting the substrate to carbon dioxide (optionally containing additional ingredients such as cosolvents or chemical intermediates); and (c) elevating the pressure of the carbon dioxide to plasticize the polymer film and reduce undesired topographic features, increase film density, and/or increase adhesion of the film to the underlying substrate.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 9, 2003
    Inventors: Ruben Carbonell, Joseph M. DeSimone, James B. McClain, James DeYoung
  • Publication number: 20030180522
    Abstract: Methods of forming a polymeric structure having a plurality of cells therein that include contacting a polymeric material that includes a first phase and a second phase with a composition comprising carbon dioxide to form the polymeric structure having a plurality of cells therein are described. Polymeric materials and microelectronic devices formed by such methods are also described.
    Type: Application
    Filed: March 28, 2002
    Publication date: September 25, 2003
    Inventors: Joseph M. DeSimone, Sara Naomi Paisner
  • Patent number: 6623355
    Abstract: Methods and apparatus for chemical mechanical planarization of an article such as a semiconductor wafer use polishing slurries including a carbon dioxide solvent or a carbon dioxide-philic composition. A carbon dioxide cleaning solvent step and apparatus may also be employed.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: September 23, 2003
    Assignee: MiCell Technologies, Inc.
    Inventors: James B. McClain, Joseph M. DeSimone
  • Publication number: 20030171495
    Abstract: Methods of carrying out a reactive extrusion processes are described that include combining at least one polymer, oligomer, or combination thereof, a carbon dioxide containing fluid, and at least one reactant in an extruder to form a mixture such that the carbon dioxide containing fluid comes into intimate contact with the at least one polymer, oligomer, or combination thereof and assists in a reaction between the at least one polymer, oligomer, or combination thereof and the at least one reactant, and wherein the at least one polymer, oligomer, or combination thereof is modified upon reaction with the at least one reactant.
    Type: Application
    Filed: December 12, 2002
    Publication date: September 11, 2003
    Inventors: Joseph Royer, Joseph M. DeSimone, George W. Roberts, Saad A. Khan
  • Publication number: 20030134049
    Abstract: A method of coating a substrate comprises immersing a surface portion of a substrate in a first phase comprising carbon dioxide and a coating component comprising a polymeric precursor; then withdrawing the substrate from the first phase into a distinct second phase so that the coating component is deposited on the surface portion; and then subjecting the substrate to conditions sufficient to polymerize the polymeric precursor and form a polymerized coating.
    Type: Application
    Filed: July 29, 2002
    Publication date: July 17, 2003
    Inventors: Ruben G. Carbonell, Joseph M. DeSimone, Brian J. Novick
  • Publication number: 20030051741
    Abstract: Methods for cleaning a microelectronic substrate in a cluster tool are described that include placing the substrate in a pressure chamber of a module in a cluster tool; pressurizing the pressure chamber; introducing liquid CO2 into the pressure chamber; cleaning the substrate in the pressure chamber; removing the liquid CO2 from the pressure chamber, depressurizing the pressure chamber, and removing the substrate from the pressure chamber. Apparatus for processing a microelectronic substrate are also disclosed that that include a transfer module, a first processing module that employs liquid carbon dioxide as a cleaning fluid coupled to the transfer module, a second processing module coupled to the transfer module, and a transfer mechanism coupled to the transfer module. The transfer mechanism is configured to move the substrate between the first processing module and the second processing module.
    Type: Application
    Filed: September 14, 2001
    Publication date: March 20, 2003
    Inventors: Joseph M. DeSimone, James P. DeYoung, James B. McClain
  • Patent number: 6517633
    Abstract: A method of coating a substrate comprises immersing a surface portion of a substrate in a liquid or supercritical first phase. The first phase comprises carbon dioxide and a coating component such as a polymer. The substrate is then withdrawn from the first phase into a distinct second phase such as a gas atmosphere so that the coating component is deposited on said surface portion. The withdrawal step is followed by separating the carbon dioxide from the coating component (e.g., by evaporation, venting, heating, etc.) so that the coating component is retained as a coating layer formed on the surface portion. Apparatus for carrying out the method by free meniscus coating, or employing a metering element such as a knife, blade, or roll, are also disclosed.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: February 11, 2003
    Assignees: North Carolina State University, The University of North Carolina at Chapel Hill
    Inventors: Ruben G. Carbonell, Joseph M. DeSimone, Brian J. Novick