Patents by Inventor Joseph T. Kennedy

Joseph T. Kennedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6538584
    Abstract: In some embodiments, the invention involves a circuit including a first set of conductors to carry a current bit set and last bit set circuitry to hold and provide a last bit set. The circuit also includes drivers coupled to interconnect conductors to provide signals from the drivers to the interconnect conductors and an encoder to receive the last bit set and the current bit set and determine whether to provide the current bit set or an encoded version of the current bit set to the drivers.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: March 25, 2003
    Assignee: Intel Corporation
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Patent number: 6536025
    Abstract: A receiver integrated circuit (IC) die or functional unit has deskew circuitry to reduce bit-to-bit timing variation that is no more than one bit time interval in a number of bits that are received, before validating the capture of the bits using a transition in a received strobe signal. The data bits and the strobe signal are driven in a parallel bus section that may be part of a shared multi-drop bus or a point-to-point bus. The system applications include interfacing to a processor or memory bus of a computer system.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: March 18, 2003
    Assignee: Intel Corporation
    Inventors: Joseph T. Kennedy, Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin
  • Publication number: 20030032274
    Abstract: A method, of forming a microelectronic device while preventing photoresist poisoning. Various layers of conductive metals and dielectric materials are deposited onto a substrate in selective sequence to form an integrated circuit. Vias and trenches are formed throughout the structure by exposing and patterning a photoresist material. The dielectric materials of the insulating layers are protected from the photoresist to prevent chemical reactions which lead to photoresist poisoning. This is done by forming a modified surface layer on the dielectric material by either depositing an additional layer that covers the dielectric material, or by modifying the exposed surface of the dielectric material to a plasma or chemical treatment.
    Type: Application
    Filed: September 13, 2002
    Publication date: February 13, 2003
    Inventors: Brian J. Daniels, Jude A. Dunne, Joseph T. Kennedy
  • Publication number: 20020190762
    Abstract: A bi-directional communication system includes a driver capable of controlling a slew rate of transmitted data signals. Impedance matching can be provided to match an impedance of a driver circuit to an impedance of a communication line. The impedance is maintained constant as data is driven from the data driver. The data receiver circuit can adjust a reference voltage in response to simultaneously transmitted data. The slew rate of the receiver circuit trip point is controlled to maintain adequate noise margin during operation. Both the receiver and driver circuits can be controlled using a delay line circuit.
    Type: Application
    Filed: August 21, 2002
    Publication date: December 19, 2002
    Applicant: Intel Corporation
    Inventors: Stephen R. Mooney, Joseph T. Kennedy, Chaiyuth Chansungsan, Prantik K. Nag
  • Publication number: 20020170024
    Abstract: A receiver integrated circuit (IC) die or functional unit has deskew circuitry to reduce bit-to-bit timing variation that is no more than one bit time interval in a number of bits that are received, before validating the capture of the bits using a transition in a received strobe signal. The data bits and the strobe signal are driven in a parallel bus section that may be part of a shared multi-drop bus or a point-to-point bus. The system applications include interfacing to a processor or memory bus of a computer system.
    Type: Application
    Filed: May 14, 2001
    Publication date: November 14, 2002
    Inventors: Joseph T. Kennedy, Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin
  • Publication number: 20020130794
    Abstract: In some embodiments, the invention involves a circuit including a first set of conductors to carry a current bit set and last bit set circuitry to hold and provide a last bit set. The circuit also includes drivers coupled to interconnect conductors to provide signals from the drivers to the interconnect conductors and an encoder to receive the last bit set and the current bit set and determine whether to provide the current bit set or an encoded version of the current bit set to the drivers.
    Type: Application
    Filed: December 28, 2000
    Publication date: September 19, 2002
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Patent number: 6452428
    Abstract: A bi-directional communication system includes a driver capable of controlling a slew rate of transmitted data signals. Impedance matching can be provided to match an impedance of a driver circuit to an impedance of a communication line. The impedance is maintained constant as data is driven from the data driver. The data receiver circuit can adjust a reference voltage in response to simultaneously transmitted data. The slew rate of the receiver circuit trip point is controlled to maintain adequate noise margin during operation. Both the receiver and driver circuits can be controlled using a delay line circuit.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: September 17, 2002
    Assignee: Intel Corporation
    Inventors: Stephen R. Mooney, Joseph T. Kennedy, Chaiyuth Chansungsan, Prantik K. Nag
  • Publication number: 20020125925
    Abstract: A synchronous clock generator for an integrated circuit is described in which a delay lock loop circuit may be used to delay a first input signal. A delay circuit is coupled to the delay lock loop circuit and receives a control voltage from the delay lock loop circuit, which is used to delay a second input signal. The first and second input signal may be complimentary.
    Type: Application
    Filed: March 8, 2001
    Publication date: September 12, 2002
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Publication number: 20020117745
    Abstract: In some embodiments, the invention involves multiple integrated circuit stubs coupled in series. At least one of the integrated circuit stubs including first conductors to receive signals from a first adjacent one of the integrated circuit stubs, second conductors to provide signals to a second adjacent one of the integrated circuit stubs, and third conductors to provide signals to an integrated circuit chip. The integrated circuit stubs include first drivers and second drivers coupled to the first, second, and third conductors, wherein the first drivers receive the external signals from the first conductors and drive them onto the second conductors and the second drivers receive signals from the first conductors and drive them onto the third conductors.
    Type: Application
    Filed: February 28, 2001
    Publication date: August 29, 2002
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Patent number: 6441649
    Abstract: The invention provides an apparatus, method and means for capturing data. In an aspect, a differential and complementary input folded-cascode clocked amplifier is provided. In an aspect, the invention provides rail-to-rail input common-mode voltage range. In an aspect, the invention provides a setup/hold time window that is smaller than the setup/hold time window of a conventional clocked amplifier and a conventional input amplifier with a separate amplifier and latch. In an aspect, the invention provides high common-mode rejection as compared with conventional clocked sense amplifiers.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: August 27, 2002
    Assignee: Intel Corporation
    Inventors: Aaron K. Martin, Stephen R. Mooney, Joseph T. Kennedy, Matthew B. Haycock, Shekhar Y. Borkar
  • Patent number: 6437601
    Abstract: In an electronic system having first and second logic devices, a free running on-chip clock signal is generated by the first logic device, where the signal has a frequency that is controlled to match that of a global free-running clock signal received by both devices. The on-chip clock signal is synchronized to a strobe signal received by the first device and that was transmitted in association with a data signal by the second device. A logic function is repeatedly performed as synchronized by the first clock signal, to repeatedly generate one or more bits from the data signal.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: August 20, 2002
    Assignee: Intel Corporation
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Publication number: 20020095622
    Abstract: The invention provides, in an embodiment, an apparatus, method and means for unintrusively observing, echoing and reading signals transmitted by one of a bus and wireless communication, without disturbing electrical properties of the bus, without adding bus latency, and without adding signal discontinuities. In an aspect, a buffer having a trigger is coupled with a component that connects to a memory bus, the buffer echoes signals to an observability port, and a diagnostic device reads the echoed signals. In an aspect, the bus is one of a simultaneous bi-directional (SBD) bus having ternary logic levels, a single ended bus, a differential bus, an optically coupled bus, a chipset bus, a frontside bus, an input/output (I/O) bus, a peripheral component interface (PCI) bus, and an industry standard architecture (ISA) bus. In an aspect, the buffer echoes bus signals having frequencies between 500 MHz. and 5 GHz. In an aspect, the buffer echoes bus signals having frequencies of at least 5 GHz.
    Type: Application
    Filed: December 28, 2000
    Publication date: July 18, 2002
    Inventors: Matthew B. Haycock, Shekhar Y. Borkar, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Publication number: 20020084838
    Abstract: The invention provides an apparatus, method and means for capturing data. In an aspect, a differential and complementary input folded-cascode clocked amplifier is provided. In an aspect, the invention provides rail-to-rail input common-mode voltage range. In an aspect, the invention provides a setup/hold time window that is smaller than the setup/hold time window of a conventional clocked amplifier and a conventional input amplifier with a separate amplifier and latch. In an aspect, the invention provides high common-mode rejection as compared with conventional clocked sense amplifiers.
    Type: Application
    Filed: December 29, 2000
    Publication date: July 4, 2002
    Inventors: Aaron K. Martin, Stephen R. Mooney, Joseph T. Kennedy, Matthew B. Haycock, Shekhar Y. Borkar
  • Publication number: 20020079928
    Abstract: In an electronic system having first and second logic devices, a free running on-chip clock signal is generated by the first logic device, where the signal has a frequency that is controlled to match that of a global free-running clock signal received by both devices. The on-chip clock signal is synchronized to a strobe signal received by the first device and that was transmitted in association with a data signal by the second device. A logic function is repeatedly performed as synchronized by the first clock signal, to repeatedly generate one or more bits from the data signal.
    Type: Application
    Filed: December 26, 2000
    Publication date: June 27, 2002
    Inventors: Shekhar Y. Borkar, Matthew B. Haycock, Stephen R. Mooney, Aaron K. Martin, Joseph T. Kennedy
  • Publication number: 20020081834
    Abstract: A method of forming a microelectronic device while preventing photoresist poisoning. Various layers of conductive metals and dielectric materials are deposited onto a substrate in selective sequence to form an integrated circuit. Vias and trenches are formed throughout the structure by exposing and patterning a photoresist material. The dielectric materials of the insulating layers are protected from the photoresist to prevent chemical reactions which lead to photoresist poisoning. This is done by forming a modified surface layer on the dielectric material by either depositing an additional layer that covers the dielectric material, or by modifying the exposed surface of the dielectric material to a plasma or chemical treatment.
    Type: Application
    Filed: December 26, 2000
    Publication date: June 27, 2002
    Applicant: Honeywell International Inc.
    Inventors: Brian J. Daniels, Jude A. Dunne, Joseph T. Kennedy
  • Patent number: 6377108
    Abstract: A differential amplifier is provided, incorporating negative hysteresis by automatic reference voltage adjustment. A delayed output signal is routed to a switch or multiplexer which functions to select one of two reference voltage levels, creating negative hysteresis. The delayed output signal is delayed by a series of inverters, which prevent certain embodiments of the invention from oscillating under some conditions. The two reference voltage levels are selected to be near the respective data signal input high and low signal voltage levels, but far enough from these levels so as not to be adversely affected by noise or other interference.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: April 23, 2002
    Assignee: Intel Corporation
    Inventors: Joseph T. Kennedy, Stephen R. Mooney, Aaron K. Martin, Rajendran Nair
  • Patent number: 6373289
    Abstract: A frequency control unit has an input to receive a digital downstream strobe signal and an output to provide a controlled delay to the input strobe signal. A downstream latch has a data input to receive a digital downstream data signal and a clock input coupled to the output of the frequency control unit. The controlled delay is essentially equal to a set up time of the latch. A delay element coupled to the output of the frequency control unit further delays the downstream strobe signal by essentially a propagation time of the latch. Output drivers are coupled to the outputs of the latch and the delay element.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: April 16, 2002
    Assignee: Intel Corporation
    Inventors: Aaron K. Martin, Stephen R. Mooney, Joseph T. Kennedy, Matthew B. Haycock, Shekhar Y. Borkar
  • Patent number: 6304141
    Abstract: A complementary input self-biased differential amplifier includes gain compensation devices. The gain compensation devices are in parallel with input transistors and are biased by a self-bias node. The gain control devices serve to keep current flowing in load devices when operating at common-mode extremes, thereby limiting the reduction in amplifier output impedance and limiting the corresponding reduction in differential-mode gain at common-mode extremes. The gain control devices also serve to reduce input stage transconductance near the center of the common-mode input voltage swing, thereby reducing differential-mode gain near the center of the swing, and reducing gain variations across the input common-mode range. The differential amplifier can include multiple input legs on either side of an input stage. Multiple legs allow multiple reference voltages to be compared to a data signal.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: October 16, 2001
    Assignee: Intel Corporation
    Inventors: Joseph T. Kennedy, Stephen R. Mooney, Aaron K. Martin, Rajendran Nair
  • Patent number: 6087847
    Abstract: Briefly, in accordance with one embodiment of the invention an integrated circuit includes: a digital feedback control circuit to adjust the impedance of an interface circuit output buffer based, at least in part, on having adjusted the impedance of a non-data signal output buffer coupled to an external impedance. Briefly, in accordance with another embodiment of the invention, a method of digitally adjusting the impedance of an interface circuit output buffer comprises: digitally adjusting the impedance of a non-data signal output buffer coupled to an external impedance, and digitally adjusting the impedance of the interface circuit output buffer based, at least in part, on the digitally adjusted impedance of the non-data signal output buffer.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: July 11, 2000
    Assignee: Intel Corporation
    Inventors: Stephen R. Mooney, Matthew B. Haycock, Joseph T. Kennedy