Patents by Inventor Joseph T. Smith

Joseph T. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972680
    Abstract: Table top sanitizer dispenser bottle bases are disclosed herein. An exemplary table top sanitizer dispenser bottle base includes a movable upper housing, the upper moveable housing has a floor with an aperture located therein and a peripheral wall. The top sanitizer dispenser bottle includes a lower stationary housing. The upper movable housing is connected to the lower stationary housing and is configured to move linearly upward and downward with respect to lower stationary. One or more biasing members bias the upper movable housing upward. A switch is included and the upper movable housing has an engagement member or surface for actuating the switch upon downward movement of the upper movable housing. At least one of a visual indicator and an audible indicator are also included. Control circuitry is provided for activating the one or more of a visual indicator and audible indicator when the engagement member actuates the switch.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: April 30, 2024
    Assignee: GOJO Industries, Inc.
    Inventors: Aaron D. Marshall, Mark T. Smith, Paul J. Brown, Aaron R. Reynolds, Joseph S. Kanfer, Shelby Jay Buell, Eugene W. Ray
  • Publication number: 20240123379
    Abstract: A device and system for purifying a fluid is provided. The system includes a tank having an interior space and a media container disposed within the interior space. A valve is provided that cooperates with an element within the interior, the valve being movable between an open and a closed position. The valve being biased to the open position when the element is not positioned within the interior space, wherein the interior space is fluidly coupled to the atmosphere in the open position. The valve further being configured to move to a closed position when the element is positioned within the interior space.
    Type: Application
    Filed: October 24, 2023
    Publication date: April 18, 2024
    Inventors: Paul H. Adams, Stephen P. Huda, James M. Buckley, John Anthony Triunfo, Joseph K. Patterson, Michael T. La Tulippe, Robert Camp, Robert F. Smith
  • Patent number: 11957248
    Abstract: An adjustable bed base has a subframe which may be raised and lowered relative to a stationary frame by primary linear actuators. A deck is attached to the subframe. The deck may be flat or fully articulated depending upon the position of secondary linear actuators which are a part of a subframe module. The subframe module may be secured to the stationary frame of the adjustable bed base. The deck may be inclined by extending one of the primary linear actuators more than the other regardless of the positions of the deck members.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: April 16, 2024
    Assignee: L&P Property Management Company
    Inventors: Isaac T. Freelend, Joseph P. Sanford, Dustin W. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11941764
    Abstract: A computer system displays a representation of a field of view of the one or more cameras, including a representation of a portion of a three-dimensional physical environment that is in the field of view of the one or more cameras. The computer system receives a request to add a first virtual effect to the displayed representation of the field of view of the one or more cameras. In response to receiving the request to add the first virtual effect to the displayed representation of the field of view of the one or more cameras and in accordance with a determination that the first virtual effect requires a scan of the physical environment, the computer system initiates a scan of the physical environment to detect one or more features of the physical environment and displays a user interface that indicates a progress of the scan of the physical environment.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: March 26, 2024
    Assignee: APPLE INC.
    Inventors: Andrew L. Harding, James A. Queen, Joseph-Alexander P. Weil, Joanna M. Newman, Ron A. Buencamino, Richard H. Salvador, Fernando Garcia, Austin T. Tamaddon, Omid Khalili, Scott W. Wilson, Thomas H. Smith, III
  • Patent number: 11931312
    Abstract: A therapy system includes a patient support apparatus and a pneumatic therapy device that is coupleable to the patient support apparatus. The therapy device may receive power and air flow from the patient support apparatus.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: March 19, 2024
    Assignee: Hill-Rom Services, Inc.
    Inventors: Eric D. Benz, John G. Byers, Scott M. Corbin, Richard H. Heimbrock, Michael A. Knecht, Bradley T. Smith, Lori Ann Zapfe, Robert M. Zerhusen, Kenneth L. Lilly, Jonathan D. Turner, James L. Walke, Joseph T. Canter, Richard J. Schuman, Sr., John V. Harmeyer
  • Publication number: 20240085623
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 14, 2024
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Patent number: 11918826
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: March 5, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 11911720
    Abstract: A device and system for purifying a fluid is provided. The system includes a tank having an interior space and a media container disposed within the interior space. A valve is provided that cooperates with an element within the interior, the valve being movable between an open and a closed position. The valve being biased to the open position when the element is not positioned within the interior space, wherein the interior space is fluidly coupled to the atmosphere in the open position. The valve further being configured to move to a closed position when the element is positioned within the interior space.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 27, 2024
    Assignee: Unger Marketing International, LLC
    Inventors: Paul H. Adams, Stephen P. Huda, James M. Buckley, John Anthony Triunfo, Joseph K. Patterson, Michael T. La Tulippe, Robert Camp, Robert F. Smith
  • Publication number: 20210220668
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 10974065
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 13, 2021
    Assignee: ARIZONA BOARD OF REGENTS OF BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 10249741
    Abstract: A flexible ion-selective field effect transistor (ISFET) and methods of making the same are disclosed. The methods may comprise: (a) attaching a flexible substrate to a rigid support with an adhesive; (b) forming an ion-selective field effect transistor structure on a surface of the flexible substrate; and (c) removing the flexible substrate from the rigid support after step (b).
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: April 2, 2019
    Inventors: Joseph T. Smith, Michael Goryll, Sahil Shah, Jennifer Blain Christen, John Stowell
  • Publication number: 20180286912
    Abstract: Some embodiments include an imaging system. The imaging system includes an active matrix pixel array having a flexible substrate and a pixel. The pixel includes a transistor over the flexible substrate, and the transistor includes multiple active layers having a first active layer and a second active layer over the first active layer. Further, the active matrix pixel array also includes a photodiode over the transistor, and the photodiode includes an N-type layer over the transistor, an I layer over the N-type layer, and a P-type layer over the I layer. Meanwhile, the imaging system also includes a flexible scintillator layer over the active matrix pixel array. Other embodiments of related systems and methods are also disclosed.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Joseph T. Smith, Michael Marrs
  • Patent number: 9991311
    Abstract: Some embodiments include an imaging system. The imaging system includes an active matrix pixel array having a flexible substrate and a pixel. The pixel includes a transistor over the flexible substrate, and the transistor includes multiple active layers having a first active layer and a second active layer over the first active layer. Further, the active matrix pixel array also includes a photodiode over the transistor, and the photodiode includes an N-type layer over the transistor, an I layer over the N-type layer, and a P-type layer over the I layer. Meanwhile, the imaging system also includes a flexible scintillator layer over the active matrix pixel array. Other embodiments of related systems and methods are also disclosed.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: June 5, 2018
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Marrs
  • Patent number: 9568621
    Abstract: Some embodiments include an imaging system. The image sensor array includes multiple image sensor sheets configured in an array grid. Each image sensor sheet of the multiple image sensor sheets can include a flexible substrate layer, and the flexible substrate layer can include a first flexible substrate side and a second flexible substrate side opposite the first flexible substrate side. Meanwhile, each image sensor sheet of the multiple sensor sheets can include multiple image sensors over the first flexible substrate side, the multiple image sensors can include multiple flat panel image detectors configured in a sheet grid, and the image sensor array can include an approximately constant pixel pitch. Other embodiments of related systems and methods are also disclosed.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: February 14, 2017
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA, ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, John Stowell
  • Publication number: 20160345846
    Abstract: A wearable biomedical device manufactured with a flat-panel display technology is provided. The device comprises flexible thin-film layers and a flexible substrate. The layers are laid on the substrate and contain a flexible two-dimensional array of organic light emitting diodes (OLEDs) and photodiodes. This array is connected to an external controller wirelessly or by wire, and the controller controls the pattern of activated OLEDs and photodiodes.
    Type: Application
    Filed: May 23, 2016
    Publication date: December 1, 2016
    Inventors: Joseph T. Smith, Edward J. Bawolek, Michael Goryll
  • Publication number: 20160287898
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 6, 2016
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Publication number: 20160260768
    Abstract: Some embodiments include an imaging system. The imaging system includes an active matrix pixel array having a flexible substrate and a pixel. The pixel includes a transistor over the flexible substrate, and the transistor includes multiple active layers having a first active layer and a second active layer over the first active layer. Further, the active matrix pixel array also includes a photodiode over the transistor, and the photodiode includes an N-type layer over the transistor, an I layer over the N-type layer, and a P-type layer over the I layer. Meanwhile, the imaging system also includes a flexible scintillator layer over the active matrix pixel array. Other embodiments of related systems and methods are also disclosed.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 8, 2016
    Applicant: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of Ariz
    Inventors: Joseph T. Smith, Michael Marrs
  • Publication number: 20150330941
    Abstract: A flexible ion-selective field effect transistor (ISFET) and methods of making the same are disclosed. The methods may comprise: (a) attaching a flexible substrate to a rigid support with an adhesive; (b) forming an ion-selective field effect transistor structure on a surface of the flexible substrate; and (c) removing the flexible substrate from the rigid support after step (b).
    Type: Application
    Filed: May 13, 2015
    Publication date: November 19, 2015
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Joseph T. Smith, Michael Goryll, Sahil Shah, Jennifer Blain Christen, John Stowell