Patents by Inventor Josephine B. Chang

Josephine B. Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11380974
    Abstract: A technique relates to a superconducting airbridge on a structure. A first ground plane, resonator, and second ground plane are formed on a substrate. A first lift-off pattern is formed of a first lift-off resist and a first photoresist. The first photoresist is deposited on the first lift-off resist. A superconducting sacrificial layer is deposited while using the first lift-off pattern. The first lift-off pattern is removed. A cross-over lift-off pattern is formed of a second lift-off resist and a second photoresist. The second photoresist is deposited on the second lift-off resist. A cross-over superconducting material is deposited to be formed as the superconducting airbridge while using the cross-over lift-off pattern. The cross-over lift-off pattern is removed. The superconducting airbridge is formed to connect the first and second ground planes by removing the superconducting sacrificial layer underneath the cross-over superconducting material. The superconducting airbridge crosses over the resonator.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 5, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, John M. Cotte
  • Patent number: 11162929
    Abstract: A method for measuring pollution that includes providing a plurality of analyte sensors arranged in a grid over a sensing area, wherein the analyte sensors measure a pollutant, and positioning at least one current sensor in the sensing area. A pollution source is localized using a pollution source locator including a dispersion model and at least one hardware processor to interpolate a location of a pollution source from variations in current measured from the current sensors and measurements of pollutants from the analyte sensors.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Hendrik F. Hamann, Siyuan Lu, Ramachandran Muralidhar, Theodore G. Van Kessel
  • Patent number: 11133452
    Abstract: A technique relates to a trilayer Josephson junction structure. A dielectric layer is on a base electrode layer that is on a substrate. A counter electrode layer is on the dielectric layer. First and second counter electrodes are formed from the counter electrode layer. First and second dielectric layers are formed from the dielectric layer. First and second base electrodes are formed from base electrode layer. The first counter electrode, first dielectric layer, and first base electrode form a first stack. The second counter electrode, second dielectric layer, and second base electrode form a second stack. A shunting capacitor is between first and second base electrodes. An ILD layer is deposited on the substrate, the first and second counter electrodes, and the first and second base electrodes. A contact bridge connects the first and second counter electrodes. An air gap is formed underneath the contact bridge by removing ILD.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: September 28, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Gerald W. Gibson, Mark B. Ketchen
  • Publication number: 20210280674
    Abstract: Field effect transistors include a stack of nanowires of vertically arranged channel layers. A source and drain region is disposed at respective ends of the vertically arranged channel layers. A gate stack is formed over, around, and between the vertically arranged channel layers. Internal spacers are each formed between the gate stack and a respective source or drain region, with at least one pair of spacers being positioned above an uppermost channel layer.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 11069775
    Abstract: Field effect transistors and methods of forming the same include forming a stack of nanosheets of alternating layers of channel material and sacrificial material. A layer of sacrificial material forms a top layer of the stack. A dummy gate is formed over the stack. Stack material outside of a region covered by the dummy gate is removed. The sacrificial material is etched to form recesses in the sacrificial material layers. Spacers are formed in the recesses in the sacrificial material layers. At least one pair of spacers is formed in recesses above an uppermost layer of channel material. The dummy gates are etched away. The top layer of sacrificial material protects an uppermost layer of channel material from damage from the anisotropic etch. The sacrificial material is etched away to expose the layers of channel material. A gate stack is formed over, around, and between the layers of channel material.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 11004933
    Abstract: Field effect transistors include a stack of nanowires of vertically arranged channel layers. A source and drain region is disposed at respective ends of the vertically arranged channel layers. A gate stack is formed over, around, and between the vertically arranged channel layers. Internal spacers are each formed between the gate stack and a respective source or drain region, with at least one pair of spacers being positioned above an uppermost channel layer.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 11, 2021
    Assignee: Tessera, Inc.
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 10935514
    Abstract: Low power combustible gas sensors using a thermocouple design are provided. In one aspect, a combustible gas sensor includes: at least one first electrode; at least one second electrode formed from a dissimilar material from the first electrode; and a catalytic material at an active reaction junction between the first electrode and the second electrode, wherein the active reaction junction between the first electrode and the second electrode forms a thermocouple. A sensing device is including, e.g., multiple sensors, and a method for sensing combustible gas using the present sensors are also provided.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Talia S. Gershon, Supratik Guha, Hendrik F. Hamann, Jiaxing Liu, Theodore G. van Kessel
  • Patent number: 10935533
    Abstract: A gas sensor enclosure is provided. The gas sensor enclosure includes at least two coaxial shells, a gas sensor, a gas permeable membrane that exposes a portion of the gas sensor to gas exchange through one of the at least two coaxial shells and a screen. The screen encloses the at least two coaxial shells, the gas sensor and the gas permeable membrane.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B Chang, Yves Martin, Theodore G. Van Kessel
  • Patent number: 10871479
    Abstract: The present invention involves a multimodal sensor network for analyte detection. A first mode may involve low-power detection and a second mode may involve determining an analyte concentration and transmitting data associated with the analyte concentration. Specifically, the first mode may include establishing an analyte sensor network in a detection region, detecting an analyte in the detection region, and generating an electrical signal in response to the detecting the analyte. In response to the electrical signal exceeding a first threshold, the analyte detection system may operate in the second mode. The second mode may include requesting data associated with the one or more environmental conditions, determining an analyte concentration based on one or more environmental conditions transmitting data associated with the analyte concentration.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: December 22, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Hendrik F. Hamann, Levente Klein, Siyuan Lu
  • Patent number: 10840381
    Abstract: A semiconductor device that includes a gate structure present on at least two suspended channel structures, and a composite spacer present on sidewalls of the gate structure. The composite spacer includes a cladding spacer present along a cap portion of the gate structure, and an inner spacer along the channel portion of the gate structure between adjacent channel semiconductor layers of at least two suspended channel structures. The inner spacer may be composed of an n-type or p-type doped glass.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Kangguo Cheng, Michael A. Guillorn, Xin Miao
  • Patent number: 10775258
    Abstract: Heuristic-based techniques for gas leak source identification are provided. In one aspect, a method for identifying a location of a gas leak source includes: obtaining gas sensor data and wind data synchronously from a gas leak detection system having a network of interconnected motes comprising gas sensors and wind sensors, with the gas sensors arranged around possible gas leak sources in a given area of interest; identifying the location of the gas leak source using the gas sensor data and wind data; and determining a magnitude of gas leak from the gas leak source using the location of the gas leak source and a distance d between the location of the gas leak source and a select one of the gas sensors from which the gas sensor data was obtained. A gas leak detection system is also provided.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: September 15, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ramachandran Muralidhar, Josephine B. Chang, Siyuan Lu, Theodore van Kessel, Hendrik F. Hamann
  • Patent number: 10768155
    Abstract: The present invention involves a multimodal sensor network for analyte detection. A first mode may involve low-power detection and a second mode may involve determining an analyte concentration and transmitting data associated with the analyte concentration. Specifically, the first mode may include establishing an analyte sensor network in a detection region, detecting an analyte in the detection region, and generating an electrical signal in response to the detecting the analyte. In response to the electrical signal exceeding a first threshold, the analyte detection system may operate in the second mode. The second mode may include requesting data associated with the one or more environmental conditions, determining an analyte concentration based on one or more environmental conditions transmitting data associated with the analyte concentration.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Hendrik F. Hamann, Levente Klein, Siyuan Lu
  • Patent number: 10699955
    Abstract: In one aspect, a method of forming a local interconnect structure includes the steps of: forming a BOX SOI wafer having a fully depleted seed layer between a first BOX layer and a second BOX layer, and an active layer over the second BOX layer; forming at least one STI region in the active layer having an STI oxide; forming at least one trench that extends through the STI oxide and the second BOX layer down to the seed layer, wherein the trench has a footprint and a location such that a portion of the STI oxide remains lining sidewalls of the trench; and growing an epitaxial material in the trench using the seed layer as a template for the growth, wherein the epitaxial material is doped and serves as the local interconnect structure which is buried in the double BOX SOI wafer.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 30, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 10680061
    Abstract: Field effect transistors include a stack of nanosheets of vertically arranged channel layers. A gate stack is formed over, around, and between the vertically arranged channel layers. Spacers are formed, with at least one top pair of spacers being positioned above an uppermost channel layer. The top pair of spacers each has a curved lower portion with a curved surface in contact with the gate stack and a straight upper portion that extends vertically from the curved portion along a straight sidewall of the gate stack.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 10658461
    Abstract: Methods for forming field effect transistors include forming a stack of nanowires of alternating layers of channel material and sacrificial material, with a top layer of the sacrificial material forming a top layer of the stack. A dummy gate is formed over the stack. Channel material and sacrificial material of the stack of nanowires is etched away outside of a region covered by the dummy gate. The sacrificial material is then selectively etched to form recesses in the sacrificial material layers. Spacers are formed in the recesses in the sacrificial material layers. The dummy gate is etched away with an anisotropic etch. The sacrificial material is etched away to expose the layers of the channel material. A gate stack is formed over and around the layers of the channel material.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 19, 2020
    Assignee: Tessera, Inc.
    Inventors: Josephine B. Chang, Bruce B. Doris, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Publication number: 20200091289
    Abstract: Field effect transistors and methods of forming the same include forming a stack of nanosheets of alternating layers of channel material and sacrificial material. A layer of sacrificial material forms a top layer of the stack. A dummy gate is formed over the stack. Stack material outside of a region covered by the dummy gate is removed. The sacrificial material is etched to form recesses in the sacrificial material layers. Spacers are formed in the recesses in the sacrificial material layers. At least one pair of spacers is formed in recesses above an uppermost layer of channel material. The dummy gates are etched away. The top layer of sacrificial material protects an uppermost layer of channel material from damage from the anisotropic etch. The sacrificial material is etched away to expose the layers of channel material. A gate stack is formed over, around, and between the layers of channel material.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Patent number: 10578571
    Abstract: High-efficiency, ultra-low power gas sensors are provided. In one aspect, a gas detector device is provided which includes: at least one gas sensor having a plurality of fins; a conformal resistive heating element on the fins; a conformal barrier layer on the resistive heating element; and a conformal sensing layer on the barrier layer. A method of forming a gas sensor as well as a method for use thereof in gas detection are also provided.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Hendrik F. Hamann, Siyuan Lu, Xiaoyan Shao
  • Patent number: 10580894
    Abstract: At least one semiconductor nanowire laterally abutted by a pair of semiconductor pad portions is formed over an insulator layer. Portions of the insulator layer are etched from underneath the at least one semiconductor nanowire such that the at least one semiconductor nanowire is suspended. A temporary fill material is deposited over the at least one semiconductor nanowire, and is planarized to physically expose top surfaces of the pair of semiconductor pad portions. Trenches are formed within the pair of semiconductor pad portions, and are filled with stress-generating materials. The temporary fill material is subsequently removed. The at least one semiconductor nanowire is strained along the lengthwise direction with a tensile strain or a compressive strain.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 10573714
    Abstract: Field effect transistors and methods of forming the same include forming a stack of nanosheets of alternating layers of channel material and sacrificial material. A layer of sacrificial material forms a top layer of the stack. A dummy gate is formed over the stack. Stack material outside of a region covered by the dummy gate is removed. The sacrificial material is etched to form recesses in the sacrificial material layers. Spacers are formed in the recesses in the sacrificial material layers. At least one pair of spacers is formed in recesses above an uppermost layer of channel material. The dummy gates are etched away. The top layer of sacrificial material protects an uppermost layer of channel material from damage from the anisotropic etch. The sacrificial material is etched away to expose the layers of channel material. A gate stack is formed over, around, and between the layers of channel material.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: February 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Xin Miao
  • Publication number: 20200028064
    Abstract: A technique relates to a trilayer Josephson junction structure. A dielectric layer is on a base electrode layer that is on a substrate. A counter electrode layer is on the dielectric layer. First and second counter electrodes are formed from the counter electrode layer. First and second dielectric layers are formed from the dielectric layer. First and second base electrodes are formed from base electrode layer. The first counter electrode, first dielectric layer, and first base electrode form a first stack. The second counter electrode, second dielectric layer, and second base electrode form a second stack. A shunting capacitor is between first and second base electrodes. An ILD layer is deposited on the substrate, the first and second counter electrodes, and the first and second base electrodes. A contact bridge connects the first and second counter electrodes. An air gap is formed underneath the contact bridge by removing ILD.
    Type: Application
    Filed: May 21, 2019
    Publication date: January 23, 2020
    Inventors: Josephine B. Chang, Gerald W. Gibson, Mark B. Ketchen