Patents by Inventor Joshua Haeseok Cho

Joshua Haeseok Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10476460
    Abstract: Low-noise amplifier having programmable-phase gain stage. In some embodiments, a radio-frequency amplifier can include an input node, an output node, and a programmable-phase gain stage implemented between the input node and the output node. The programmable-phase gain stage can be configured to operate in one of a plurality of gain settings, and to provide a desired phase for a signal at each of the plurality of gain settings.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 12, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho
  • Patent number: 10389305
    Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed for particular gain modes to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores when switching gain modes to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a high gain amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity (e.g., for lower gain modes). The disclosed signal amplifiers can also have switchable reference biases to provide targeted bias current matching. The disclosed signal amplifiers can also include degeneration switching blocks for individual amplifier cores to improve signal linearity.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 20, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
  • Patent number: 10348262
    Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths that allow signals in a high gain mode to bypass attenuation. This advantageously reduces or eliminates performance penalties in the high gain mode. The programmable attenuators can be configured to improve linearity of the amplification process through pre-LNA attenuation in targeted gain modes. In addition, described herein are variable gain amplifiers with embedded attenuators in a switching network. The attenuators can be embedded onto switches and can be configured to have little or no effect on a noise factor in a high gain mode because the switching network can provide an attenuation bypass in a high gain mode and an attenuation in other gain modes. The programmable attenuators can be embedded onto a multi-input LNA architecture.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 9, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Junhyung Lee, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana
  • Publication number: 20190207639
    Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality. The degeneration block can be selectively isolated from a reference potential node to improve performance.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 4, 2019
    Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
  • Patent number: 10230417
    Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 12, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
  • Patent number: 10056880
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: August 21, 2018
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Publication number: 20180175797
    Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed for particular gain modes to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores when switching gain modes to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a high gain amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity (e.g., for lower gain modes). The disclosed signal amplifiers can also have switchable reference biases to provide targeted bias current matching. The disclosed signal amplifiers can also include degeneration switching blocks for individual amplifier cores to improve signal linearity.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 21, 2018
    Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
  • Publication number: 20180062600
    Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths that allow signals in a high gain mode to bypass attenuation. This advantageously reduces or eliminates performance penalties in the high gain mode. The programmable attenuators can be configured to improve linearity of the amplification process through pre-LNA attenuation in targeted gain modes. In addition, described herein are variable gain amplifiers with embedded attenuators in a switching network. The attenuators can be embedded onto switches and can be configured to have little or no effect on a noise factor in a high gain mode because the switching network can provide an attenuation bypass in a high gain mode and an attenuation in other gain modes. The programmable attenuators can be embedded onto a multi-input LNA architecture.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Inventors: Junhyung LEE, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana
  • Publication number: 20180062690
    Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
  • Publication number: 20180062599
    Abstract: Low-noise amplifier having programmable-phase gain stage. In some embodiments, a radio-frequency amplifier can include an input node, an output node, and a programmable-phase gain stage implemented between the input node and the output node. The programmable-phase gain stage can be configured to operate in one of a plurality of gain settings, and to provide a desired phase for a signal at each of the plurality of gain settings.
    Type: Application
    Filed: August 28, 2017
    Publication date: March 1, 2018
    Inventors: Junhyung LEE, Johannes Jacobus Emile Maria HAGERAATS, Joshua Haeseok CHO
  • Publication number: 20180034445
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Application
    Filed: August 16, 2017
    Publication date: February 1, 2018
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Patent number: 9866202
    Abstract: Digitally controlled attenuators with low phase shift are provided herein. In certain configurations, a digitally controlled attenuator includes an attenuation circuit electrically connected between an input terminal and an output terminal, a bypass circuit electrically connected in parallel with the attenuation circuit between the input terminal and the output terminal, and a plurality of phase compensation capacitors including a first phase compensation capacitor and a second phase compensation capacitor electrically connected in series between the input terminal and the output terminal. The bypass circuit is configured to receive a mode control signal for selecting the bypass circuit to control an amount of attenuation between the input terminal and the output terminal. Additionally, the phase compensation capacitors are operable to compensate for a phase difference between a first signal path through the attenuation circuit and a second signal path through the bypass circuit.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: January 9, 2018
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Patent number: 9787285
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: October 10, 2017
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Publication number: 20170126208
    Abstract: Digitally controlled attenuators with low phase shift are provided herein. In certain configurations, a digitally controlled attenuator includes an attenuation circuit electrically connected between an input terminal and an output terminal, a bypass circuit electrically connected in parallel with the attenuation circuit between the input terminal and the output terminal, and a plurality of phase compensation capacitors including a first phase compensation capacitor and a second phase compensation capacitor electrically connected in series between the input terminal and the output terminal. The bypass circuit is configured to receive a mode control signal for selecting the bypass circuit to control an amount of attenuation between the input terminal and the output terminal. Additionally, the phase compensation capacitors are operable to compensate for a phase difference between a first signal path through the attenuation circuit and a second signal path through the bypass circuit.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Patent number: 9584096
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a digital step attenuator (DSA) includes a plurality of DSA stages arranged in a cascade between an input terminal and an output terminal. Each of the DSA stages can be operated in an attenuation mode or in a bypass mode. The DSA further includes an attenuation control circuit, which can be used to control the modes of operation of the DSA stages. The attenuation control circuit can be used to operate the DSA over a plurality of attenuation steps, which can be digitally selectable. To provide low phase shift across the range of attenuation steps, a DSA stage can include one or more phase compensation capacitors used to provide low phase shift and to compensate for a phase difference between the DSA stage operating in the bypass mode and in the attenuation mode.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: February 28, 2017
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Publication number: 20170033771
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Application
    Filed: September 14, 2016
    Publication date: February 2, 2017
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Patent number: 9473109
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: October 18, 2016
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Publication number: 20150326205
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a digital step attenuator (DSA) includes a plurality of DSA stages arranged in a cascade between an input terminal and an output terminal. Each of the DSA stages can be operated in an attenuation mode or in a bypass mode. The DSA further includes an attenuation control circuit, which can be used to control the modes of operation of the DSA stages. The attenuation control circuit can be used to operate the DSA over a plurality of attenuation steps, which can be digitally selectable. To provide low phase shift across the range of attenuation steps, a DSA stage can include one or more phase compensation capacitors used to provide low phase shift and to compensate for a phase difference between the DSA stage operating in the bypass mode and in the attenuation mode.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal
  • Publication number: 20150326204
    Abstract: Apparatus and methods for digital step attenuators are provided herein. In certain configurations, a DSA includes a plurality of DSA stages that can be set in an attenuation mode or in a bypass mode using a plurality of switching circuits. A first switching circuit of the plurality of switching circuits includes a field effect transistor (FET) switch, a gate resistor, one or more gate resistor bypass switches, and a pulse generation circuit. The gate resistor is electrically connected between a switch control input and a gate of the FET switch, and a switch control signal can be provided to the switch control input to turn on or off the FET switch. In response to detecting a rising and/or falling edge of the switch control signal, the pulse generation circuit can control the one or more gate resistor bypass switches to bypass the gate resistor.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 12, 2015
    Inventors: Joshua Haeseok Cho, Yunyoung Choi, Bipul Agarwal