Patents by Inventor Joshua Marks

Joshua Marks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220043267
    Abstract: Methods and systems relating generally to information displays, and more particularly to systems and methods for backlight assemblies for information displays that emit an angularly narrow cone of light. A backlight assembly that emits a narrow angular cone of light can be particularly beneficial in a head-mounted display configuration, such as for use as part of virtual reality or augmented reality systems, where the head-mounted display comprises a lens assembly that directs light from an information display to the eyes of the user. Such a backlight assembly configuration may help reduce undesirable visual effects like flood illumination, ghost images, glare, and scattering.
    Type: Application
    Filed: July 22, 2021
    Publication date: February 10, 2022
    Inventor: Joshua Mark Hudman
  • Patent number: 11234706
    Abstract: An example occlusive implant is disclosed. The example occlusive implant includes an expandable framework including a height and a plurality of support members defining a proximal end region of the expandable framework and a central hub member attached to the plurality of support members. Additionally, the expandable framework is configured to shift between a first configuration and a second configuration, wherein the height of the expandable framework remains substantially the same in both the first configuration and the second configuration. Further, the central hub member is configured to shift relative to the proximal end region while the expandable framework shifts between the first configuration and the second configuration.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 1, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Joshua Mark Inouye
  • Patent number: 11240904
    Abstract: Provided is an apparatus for and method of controlling formation of droplets (102a, b) used to generate EUV radiation that comprise an arrangement producing a laser beam directed to an irradiation region and a droplet source. The droplet source (92) includes a fluid exiting an nozzle (98) and a sub-system having an electro-actuatable element (104) producing a disturbance in the fluid (96). The droplet source produces a stream (100) that breaks down into droplets that in turn coalesce into larger droplets as they progress towards the irradiation region. The electro-actuatable element is driven by a hybrid waveform that controls the droplet generation/coalescence process. Also disclosed is a method of determining the transfer function for the nozzle.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: February 1, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Joshua Mark Lukens, Bob Rollinger, Pooriya Beyhaghi
  • Publication number: 20220011998
    Abstract: The disclosure relates generally to techniques for determining pupil location of a display device's user via imaging sensors on the display device, and using that information to verify and/or correct positioning of the display device or its internal components. The display device may be a head-mounted display (“HMD”) device with display panels separated from a wearer's eyes via intervening lenses, with the sensors including optical flow sensor integrated circuits mounted on or near at least one of the display panels to capture images of the wearer's eye locations through the lenses, and with the correction to the positioning including modifications to the alignment or other positioning of the HMD device on the wearer user's head and/or its internal components within the HMD device (e.g., based on automated control of motors on the HMD device) to reflect a target alignment of the wearer's eyes relative to displayed information.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 13, 2022
    Inventors: Joshua Mark Hudman, Jeremy Adam Selan
  • Publication number: 20220000488
    Abstract: An example medical device for occluding the left atrial appendage is disclosed. The example medical device for occluding the left atrial appendage includes an expandable member having a first end region, a second end region and an inflation cavity. The example medical device includes at least one fixation member having a first end and a second end coupled to the expandable member. The at least one fixation member is configured to move from a delivery configuration to a deployed configuration in response to an expansion of the expandable member. Additionally, the example medical device includes a valve member extending at least partially into the inflation cavity and the expandable member is configured to expand and seal the opening of the left atrial appendage.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: James M. Anderson, Uchenna Junior Agu, David John Onushko, Lloyd Radman, Jose A. Meregotte, John M. Edgell, David Raab, Joshua Mark Inouye
  • Publication number: 20210392733
    Abstract: Disclosed is a system for generating EUV radiation in which current flowing through target material in the orifice 320 of a nozzle in a droplet generator is controlled by providing alternate lower impedance paths for the current and/or by limiting a high frequency component of a drive signal applied to the droplet generator.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 16, 2021
    Inventors: Bob Rollinger, Georgiy Olegovich Vaschenko, Chirag Rajyaguru, Alexander Igorevich Ershov, Joshua Mark Lukens, Mathew Cheeran Abraham
  • Patent number: 11123079
    Abstract: An example medical device for occluding the left atrial appendage is disclosed. The example medical device for occluding the left atrial appendage includes an expandable member having a first end region, a second end region and an inflation cavity. The example medical device includes at least one fixation member having a first end and a second end coupled to the expandable member. The at least one fixation member is configured to move from a delivery configuration to a deployed configuration in response to an expansion of the expandable member. Additionally, the example medical device includes a valve member extending at least partially into the inflation cavity and the expandable member is configured to expand and seal the opening of the left atrial appendage.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: September 21, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: James M. Anderson, Uchenna Junior Agu, David John Onushko, Lloyd Radman, Jose A. Meregotte, John M. Edgell, David Raab, Joshua Mark Inouye
  • Publication number: 20210254861
    Abstract: Solar receivers including a plurality of multi-scale solar absorbing surfaces arranged such that light or heat reflected from or emitted from one or more of the plurality of solar absorbing surfaces impinges one or more other solar absorbing surfaces of the solar receiver. The disclosed receivers increase the amount of absorbed energy from a concentrated light source, such as a heliostat field, and reduce radiative and convective heat losses.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 19, 2021
    Inventors: Clifford K. Ho, Joshua Mark Christian, John Downing Pye, Jesus Daniel Ortega
  • Patent number: 11093208
    Abstract: The disclosure relates generally to techniques for determining pupil location of a display device's user via imaging sensors on the display device, and using that information to verify and/or correct positioning of the display device or its internal components. The display device may be a head-mounted display (“HMD”) device with display panels separated from a wearer's eyes via intervening lenses, with the sensors including optical flow sensor integrated circuits mounted on or near at least one of the display panels to capture images of the wearer's eye locations through the lenses, and with the correction to the positioning including modifications to the alignment or other positioning of the HMD device on the wearer user's head and/or its internal components within the HMD device (e.g., based on automated control of motors on the HMD device) to reflect a target alignment of the wearer's eyes relative to displayed information.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: August 17, 2021
    Assignee: Valve Corporation
    Inventors: Joshua Mark Hudman, Jeremy Adam Selan
  • Publication number: 20210250570
    Abstract: The present disclosure related generally to techniques for improving the performance and efficiency of display systems, such as laser scan beam display systems or other types of display systems (e.g., micro-displays). Display systems of the present disclosure may include a polarization compensation optic, such as a spatially varying polarizer, that provides phase retardation that varies as a function of position, which provides polarization compensation to provide light that is well suited for a polarization sensitive optic of the display system, such as a waveguide-based optical system, a pancake optical system, a birdbath optical system, a coating-based optical system, etc. The display systems of the present disclosure may be components of head-mounted display systems, or other types of display systems.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247556
    Abstract: Improved illumination optics for various applications. The illumination optics may include an optical beam spreading structure that provides a large spread angle for an incident collimated beam or provides finer detail or resolution compared to convention diffractive optical elements. The optical beam spreading structure may include first and second spatially varying polarizers that are optically aligned with each other. The first and second spatially varying polarizers may be formed of a liquid crystal material, such as a multi-twist retarder (MTR). The first and second spatially varying polarizers may diffract light of orthogonal polarization states, which allows for different diffraction patterns to be used in a single optical structure. The two patterns may provide a combined field of view that is larger than either of the first and second fields of view or may provide finer detail or resolution than the first or second fields of view can provide alone.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 12, 2021
    Inventors: Joshua Mark Hudman, Kameron Wade Rausch
  • Publication number: 20210247611
    Abstract: The present disclosure relates generally to techniques for improving the performance and efficiency of optical systems, such as optical systems for using head-mounted display system. The optical systems of the present disclosure may include polarized catadioptric optics, or “pancake optics,” which utilize a wire grid polarizer as a reflective polarizer. Wire grid polarizers may not perform uniformly over wavelength or over varying angles of incidence. To improve performance, a spatially varying polarizer is provided in the optical system that operates to provide polarization compensation for the wire grid polarizer so that the wire grid polarizer performs more uniformly over wavelength and/or over incidence angles (e.g., on-axis and off-axis). The spatially varying polarizer may be formed of a liquid crystal material, such as a multi-twist retarder.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247613
    Abstract: The present disclosure related generally to techniques for improving the performance and efficiency of display systems, such as laser scan beam display systems or other types of display systems (e.g., micro-displays) of an HMD or other device. Display systems of the present disclosure may include a polarization compensation optic, such as a spatially varying polarizer, that provides phase retardation that varies as a function of position, which provides polarization compensation to provide light that is well suited for a polarization sensitive optic of the display system, such as a waveguide-based optical system, a pancake optical system, a birdbath optical system, a coating-based optical system, etc. The spatially varying polarizer may be varied spatially in real-time based on a user's gaze location to provide an optimized field of view in a region where the user is known or inferred to be gazing, thereby providing improved optical performance.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247842
    Abstract: Systems and methods for tracking the position of a head-mounted display (HMD) system component. The HMD component may carry a plurality of angle sensitive detectors that are able to detect the angle of light emitted from a light source. The HMD component may include one or more scatter detectors that detect whether light has been scattered or reflected, so such light can be ignored. Control circuitry causes light sources to emit light according a specified pattern, and receives sensor data from the plurality of angle sensitive detectors. The processor may process the sensor data and scatter detector data, for example using machine learning or other techniques, to track a position of the HMD component. An angle sensitive detector may include a spatially-varying polarizer having a position-varying polarizing pattern and one or more polarizer layers that together are operative to detect the angle of impinging light.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 12, 2021
    Inventors: Joshua Mark Hudman, Kameron Wade Rausch
  • Publication number: 20210247631
    Abstract: An optical system is provided that includes a correction portion including one or more spatially varying polarizers. A first spatially varying polarizer of the one or more spatially varying polarizers has a first control input configured to receive a first control signal indicating whether the first spatially varying polarizer is to be active or inactive. When active, the first spatially varying polarizer is operative to provide a first optical correction on light passing through the correction portion. The optical system includes a controller configured to determine whether to implement the first optical correction on the light passing through the correction portion and in response to determining to implement the first optical correction on the light passing through the correction portion, output the first control signal indicating the first spatially varying polarizer is to be active. Additional spatially varying polarizers may be controlled to provide additional or alternative optical corrections.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210250476
    Abstract: Systems and methods of the present disclosure provide a compact camera device that utilizes one or more spatially varying polarizers, such as one or more multi-twist retarders, to provide compact designs with improved performance. The spatially varying polarizers may be used to multiplex light received by a camera, which allows optics to modify (e.g., focus) incident light in a polarization specific manner to provide better resolution, reduced form factor, or other advantages.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247614
    Abstract: An optical system is provided. The optical system includes a gaze tracker operative to track a gaze of a user and output data representative of the gaze and a correction portion including multiple spatially varying polarizers. A first polarizer of the spatially varying polarizers has a first control input configured to receive a first control signal indicating whether the first polarizer is to be active or inactive. The first polarizer, when active, provides a first optical correction on light passing through at a location corresponding to a first region of a virtual image. The optical system includes a controller configured to receive the data representative of the gaze, determine, based on the gaze, whether to implement the first optical correction on the light and in response to determining to implement the first optical correction on the light, output the first control signal indicating the first polarizer is to be active.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247646
    Abstract: Systems and methods for providing a polarization recycling structure for use in applications, such as display systems that include a liquid crystal display assembly. The polarization recycling structure may include a first spatially varying polarizer spaced apart from a second spatially varying polarizer. The first spatially varying polarizer may include a lens array that receives light from a light source and focuses light of a first polarization state and passes light of a second polarization state. The second spatially varying polarizer receive light from the first spatially varying polarizer, passes the focused light of the first polarization state, and transforms the light of the second polarization state into the first polarization state, thereby providing only light of the first polarization state at the output of the polarization recycling structure.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Publication number: 20210247612
    Abstract: The present disclosure is related generally to techniques for improving the performance and efficiency of display systems, such as laser scan beam display systems or other types of display systems (e.g., micro-displays) of an HMD system or other device. Display systems of the present disclosure may utilize polarization multiplexing that allow for improved optimization of diffraction optics. In at least some implementations, a display system may selectively polarize light dependent on wavelength (e.g., color) or field of view. An optical combiner may include polarization sensitive diffractive optical elements that are each optimized for a subset of colors or portions of an overall field of view, thereby providing improved correction optics for a display system.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 12, 2021
    Inventor: Joshua Mark Hudman
  • Patent number: 11086129
    Abstract: Methods and systems relating generally to information displays, and more particularly to systems and methods for backlight assemblies for information displays that emit an angularly narrow cone of light. A backlight assembly that emits a narrow angular cone of light can be particularly beneficial in a head-mounted display configuration, such as for use as part of virtual reality or augmented reality systems, where the head-mounted display comprises a lens assembly that directs light from an information display to the eyes of the user. Such a backlight assembly configuration may help reduce undesirable visual effects like flood illumination, ghost images, glare, and scattering.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: August 10, 2021
    Assignee: Valve Corporation
    Inventor: Joshua Mark Hudman