Patents by Inventor Joshua Siegel

Joshua Siegel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140062451
    Abstract: A band gap reference circuit including a band gap reference generator having an output for providing a reference voltage and a startup circuit for controlling current provided to the band gap reference generator when activated. The startup circuit includes a turnoff circuit having an output to deactivate the startup circuit to not control current to the band gap reference generator based on a voltage of the output of the band gap reference generator. The turnoff circuit includes an inverter having a first transistor of a first conductivity type in series with a second transistor of a second conductivity type opposite the first conductivity type. The startup circuit includes a body bias circuit connected to a body of the first transistor to provide a voltage differential between the body of the first transistor and a source terminal of the first transistor.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Inventors: JOSHUA SIEGEL, Khoi B. Mai
  • Patent number: 7898323
    Abstract: An amplifying circuit has an offset calibration mode and a normal mode. The amplifying circuit includes an amplifier having a non-inverting input and an inverting input for receiving, during the normal mode, a first input signal and a second input signal and an output for providing a high speed output signal, wherein the first input signal is a reference voltage or a high speed signal and the second input signal is a high speed signal. The amplifying circuit further includes a first transmission gate and a second transmission gate coupled in series between the non-inverting input and an inverting input that are enabled during the offset calibration mode. A benefit of this approach is that capacitance between the inverting and non-inverting inputs is reduced by the first and second transmission gates being in series. There is further benefit in reducing this capacitance by having each transmission gate receive an enable signal from a different source.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: March 1, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Joshua Siegel, Hector Sanchez
  • Patent number: 7872494
    Abstract: Components of a memory controller are calibrated in a select sequence to compensate for variances in skew and signal level variations. The offset bias of the receiver of the I/O cell and the termination resistance of the I/O cell are calibrated. The duty cycles of the transmit path and receive path associated with the I/O cell can be calibrated using the calibrated receiver. In one aspect, the driver of the I/O cell can be calibrated prior to calibrating the receiver. Performing the calibration processes of the memory controller in one of the particular sequences described herein improves the timing budgets for the signaling conducted by the memory controller.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: January 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James A. Welker, Hector Sanchez, Joshua Siegel
  • Publication number: 20100315119
    Abstract: Components of a memory controller are calibrated in a select sequence to compensate for variances in skew and signal level variations. The offset bias of the receiver of the I/O cell and the termination resistance of the I/O cell are calibrated. The duty cycles of the transmit path and receive path associated with the I/O cell can be calibrated using the calibrated receiver. In one aspect, the driver of the I/O cell can be calibrated prior to calibrating the receiver. Performing the calibration processes of the memory controller in one of the particular sequences described herein improves the timing budgets for the signaling conducted by the memory controller.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: James A. Welker, Hector Sanchez, Joshua Siegel
  • Publication number: 20100308912
    Abstract: An amplifying circuit has an offset calibration mode and a normal mode. The amplifying circuit includes an amplifier having a non-inverting input and an inverting input for receiving, during the normal mode, a first input signal and a second input signal and an output for providing a high speed output signal, wherein the first input signal is a reference voltage or a high speed signal and the second input signal is a high speed signal. The amplifying circuit further includes a first transmission gate and a second transmission gate coupled in series between the non-inverting input and an inverting input that are enabled during the offset calibration mode. A benefit of this approach is that capacitance between the inverting and non-inverting inputs is reduced by the first and second transmission gates being in series. There is further benefit in reducing this capacitance by having each transmission gate receive an enable signal from a different source.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Inventors: Joshua Siegel, Hector Sanchez
  • Publication number: 20090018655
    Abstract: Disclosed are biocompatible implants that combine a scaffold material for supporting long term repair of a soft tissue with an elongated member such as a suture for aiding in placement of the scaffold during a surgical procedure as well as for immediate mechanical reinforcement of a repair site. The components of an implant are combined such that a longitudinal load placed upon a composite structure can be borne primarily by the elongated member and the scaffold material is isolated from the longitudinal load. Thus, the scaffold material of a composite can be protected from damage due to applied loads and stresses during and following a surgical procedure.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: John Brunelle, Joshua Siegel, Christine Nguyen, Brenda Yantzer, Thomas Sander
  • Publication number: 20060095355
    Abstract: A financial securitization transaction, such as a collateralized debt obligation (CDO) transaction, that (i) is at least partially collateralized by a plurality of net lease assets where the tenants to the leases are financial institutions generally with assets of less than $10 billion, and (ii) where such securitization may not be fully collateralized by such net lease assets, in which case the remainder of the collateral for such securitization may consist predominantly of obligations (including trust preferred securities, debt and/or surplus notes) of financial institutions, and/or traunches of CDOs backed predominantly by such obligations. By restricting the assets to net lease assets in which the tenants are financial institutions and restricting the remaining assets to predominately obligations of financial institutions or tranches of CDOs backed by such obligations, more favorable ratings are obtainable from the ratings agencies for the securities backed by the net lease assets.
    Type: Application
    Filed: June 24, 2005
    Publication date: May 4, 2006
    Inventors: Matthew Mayers, David Rosenwaks, Joshua Siegel
  • Patent number: 6040729
    Abstract: An output buffer translates digital input signals which toggle between ground and V.sub.DDL to signals which toggle between ground and V.sub.DDH. The technology dielectric breakdown voltage limit is less than the magnitude of V.sub.DDH, such that use of a traditional output stage would subject transistors' dielectrics to voltages which exceed their dielectric breakdown limit, and would thus be damaged. Predrive circuits (40, 50) control output stage (70) transistors' (72, 78) gates, and voltage dropping circuits control output stage (70) transistors (74, 76). These control signals are generated specifically to maximize output stage transistor drive strengths, thereby minimizing output stage size. Output buffer functions when V.sub.DDL =V.sub.DDH, and its performance is V.sub.DDL independent. Temperature compensation is incorporated into the output buffer by deliberately offsetting temperature effects on output stage transistor drive strengths.
    Type: Grant
    Filed: August 25, 1997
    Date of Patent: March 21, 2000
    Assignee: Motorola, Inc.
    Inventors: Hector Sanchez, Jose M. Alvarez, Joshua Siegel, Carmine Nicoletta
  • Patent number: 5917358
    Abstract: Output buffer (100) translates input signals from one voltage range to a second voltage range. The second voltage range may be identical to the first range or may be greater. The particular range is programmable by one of several ways. This feature makes output buffer especially suitable for use in devices which must be compatible with two voltage ranges. Output buffer uses a bias generator (110) to limit the voltage across the gate oxide of its various transistors to a level which is consistent with the first voltage range.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: June 29, 1999
    Assignee: Motorola, Inc.
    Inventors: Hector Sanchez, Carmine Nicoletta, Joshua Siegel, Jose Alvarez
  • Patent number: 5896045
    Abstract: Level shifting circuit (36) utilizes self-timed pulse generators (40, 46) to provide a series of pulses in response to an input signal. The pulses are used to create a pulse of specified duration at a predetermined voltage level at first and second nodes (44, 45). In response to the predetermined pulses, shifted inverters (50, 52) provide a voltage output of either V.sub.DDH or V.sub.DDL, one of two different voltages which exist in a system utilizing the level shifter (36). In one form, level shifting circuit (36) may be used in an output buffer (60) to interface an integrated circuit designed to operate at a low supply voltage with additional integrated circuits operating at a higher supply voltage which could damage the gate oxide of the transistors in the low supply voltage integrated circuit.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: April 20, 1999
    Inventors: Joshua Siegel, Hector Sanchez, Chai-Chin Chao