Patents by Inventor Jozef Kudela

Jozef Kudela has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9818580
    Abstract: A transmission line RF applicator apparatus and method for coupling RF power to a plasma in a plasma chamber. The apparatus comprises two conductors, one of which has a plurality of apertures. In one aspect, apertures in different portions of the conductor have different sizes, spacing or orientations. In another aspect, adjacent apertures at successive longitudinal positions are offset along the transverse dimension. In another aspect, the apparatus comprises an inner conductor and one or two outer conductors. The main portion of each of the one or two outer conductors includes a plurality of apertures that extend between an inner surface and an outer surface of the outer conductor.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 14, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Carl A. Sorensen, Suhail Anwar, John M. White, Ranjit Indrajit Shinde, Seon-Mee Cho, Douglas D. Truong
  • Patent number: 9761365
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: September 12, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Carl A. Sorensen, John M. White
  • Publication number: 20170178867
    Abstract: In one embodiment, a diffuser for a deposition chamber includes a plate having edge regions and a center region, and plurality of gas passages comprising an upstream bore and an orifice hole fluidly coupled to the upstream bore that are formed between an upstream side and a downstream side of the plate, and a plurality of grooves surrounding the gas passages, wherein a depth of the grooves varies from the edge regions to the center region of the plate.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 22, 2017
    Inventors: Jozef KUDELA, Allen K. LAU, Robin L. TINER, Gaku FURUTA, John M. WHITE, William Norman STERLING, Dongsuh LEE, Suhail ANWAR, Shinichi KURITA
  • Publication number: 20160362788
    Abstract: The present disclosure relates to methods and apparatus for an atomic layer deposition (ALD) processing chamber for device fabrication and methods for replacing a gas distribution plate and mask of the same. The ALD processing chamber has a slit valve configured to allow removal and replacement of a gas distribution plate and mask. The ALD processing chamber may also have actuators operable to move the gas distribution plate to and from a process position and a substrate support assembly operable to move the mask to and from a process position.
    Type: Application
    Filed: January 20, 2015
    Publication date: December 15, 2016
    Inventors: Shinichi KURITA, Jozef KUDELA, John M. WHITE, Dieter HAAS
  • Publication number: 20160319422
    Abstract: The present disclosure relates to methods and apparatus for a thin film encapsulation (TFE). A process kit for TFE is provided. The process kit is an assembly including a window, a mask parallel to the window, and a frame. The process kit further includes an inlet channel for flowing process gases into the volume between the window and the mask, an outlet channel for pumping effluent gases away from the volume between the window and the mask, and seals for inhibiting the flow of process gases and effluent gases to undesired locations. A method of performing TFE is provided, including placing a substrate under the mask of the above described process kit, flowing process gases into the process kit, and activating some of the process gases into reactive species by means of an energy source within a processing chamber.
    Type: Application
    Filed: January 20, 2015
    Publication date: November 3, 2016
    Inventors: Shinichi KURITA, Jozef KUDELA, John M. WHITE, Dieter HAAS
  • Patent number: 9425026
    Abstract: Systems and methods are provided for matching the impedance of a load to an impedance of a power generator. Embodiments include a matching network with a dynamically configurable component assembly array couplable to the variable impedance load and the RF power generator, wherein the component assembly array includes one or more tune and load electrical components. The component assembly array is adapted to be configured for each recipe step, and at least one of the electrical components is a variable impedance component adjustable to reduce RF energy reflected from the variable impedance load for each recipe step. Numerous other aspects are provided.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: August 23, 2016
    Assignee: Applied Materials, Inc
    Inventors: Suhail Anwar, Carl A. Sorensen, Jozef Kudela
  • Publication number: 20160208380
    Abstract: An apparatus for introducing gas into a processing chamber comprising one or more gas distribution tubes having gas-injection holes which may be larger in size, greater in number, and/or spaced closer together at sections of the gas introduction tubes where greater gas conductance through the gas-injection holes is desired. An outside tube having larger gas-injection holes may surround each gas distribution tube. The gas distribution tubes may be fluidically connected to a vacuum foreline to facilitate removal of gas from the gas distribution tube at the end of a process cycle.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 21, 2016
    Inventors: John M. WHITE, Suhail ANWAR, Jozef KUDELA, Carl A. SORENSEN, Tae Kyung WON, Seon-Mee CHO, Soo Young CHOI, Beom Soo Park, Benjamin M. JOHNSTON
  • Patent number: 9397380
    Abstract: A guided wave applicator comprising two electrically conductive waveguide walls and a waveguide dielectric. The volume of the waveguide dielectric is composed of non-gaseous dielectric material and is positioned between the two waveguide walls. The waveguide dielectric includes first and second longitudinal ends and includes first, second, third and fourth sides extending longitudinally between the two longitudinal ends. The first waveguide wall is positioned so that it covers the first side of the waveguide dielectric, and the second waveguide wall is positioned so that it covers the second side of the waveguide dielectric. In operation, electrical power can be supplied to one or both longitudinal ends of the waveguide dielectric, whereby the power can be coupled to a plasma through the exposed sides of the waveguide dielectric.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 19, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Carl A. Sorensen, Suhail Anwar, John M. White
  • Patent number: 9324597
    Abstract: The present invention generally relates to a vertical CVD system having a processing chamber that is capable of processing multiple substrates. The multiple substrates are disposed on opposite sides of the processing source within the processing chamber, yet the processing environments are not isolated from each other. The processing source is a horizontally centered vertical plasma generator that permits multiple substrates to be processed simultaneously on either side of the plasma generator, yet independent of each other. The system is arranged as a twin system whereby two identical processing lines, each with their own processing chamber, are arranged adjacent to each other. Multiple robots are used to load and unload the substrates from the processing system. Each robot can access both processing lines within the system.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 26, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shinichi Kurita, Jozef Kudela, Suhail Anwar, John M. White, Dong-Kil Yim, Hans Georg Wolf, Dennis Zvalo, Makoto Inagawa, Ikuo Mori
  • Publication number: 20160049917
    Abstract: Systems and methods are provided for matching the impedance of a load to an impedance of a power generator. Embodiments include a matching network with a dynamically configurable component assembly array couplable to the variable impedance load and the RF power generator, wherein the component assembly array includes one or more tune and load electrical components. The component assembly array is adapted to be configured for each recipe step, and at least one of the electrical components is a variable impedance component adjustable to reduce RF energy reflected from the variable impedance load for each recipe step. Numerous other aspects are provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 18, 2016
    Inventors: Suhail Anwar, Carl A. Sorensen, Jozef Kudela
  • Publication number: 20160049280
    Abstract: A compact configurable radio frequency (RF) matching network for matching RF energy output from an RF generator to a variable impedance load is disclosed. The matching network includes an input connector; an output connector; and a component assembly array including one or more tune and load electrical components. At least one of the electrical components is coupled to the input connector, at least one of the electrical components is coupled to the output connector, the component assembly array is adapted to be arranged in a selected topology, and the selected topology is adapted to reduce RF energy reflected from the variable impedance load. Numerous other aspects are provided.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 18, 2016
    Inventors: Jozef Kudela, Ranjit I. Shinde, Suhail Anwar
  • Publication number: 20150340204
    Abstract: A transmission line RF applicator apparatus and method for coupling RF power to a plasma in a plasma chamber. The apparatus comprises two conductors, one of which has a plurality of apertures. In one aspect, apertures in different portions of the conductor have different sizes, spacing or orientations. In another aspect, adjacent apertures at successive longitudinal positions are offset along the transverse dimension. In another aspect, the apparatus comprises an inner conductor and one or two outer conductors. The main portion of each of the one or two outer conductors includes a plurality of apertures that extend between an inner surface and an outer surface of the outer conductor.
    Type: Application
    Filed: June 1, 2015
    Publication date: November 26, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Carl A. Sorensen, Suhail Anwar, John M. White, Ranjit Indrajit Shinde, Seon-Mee Cho, Douglas D. Truong
  • Publication number: 20150273490
    Abstract: Embodiments of the invention generally include shield frame assembly for use with a showerhead assembly, and a showerhead assembly having a shield frame assembly that includes an insulator that tightly fits around the perimeter of a showerhead in a vacuum processing chamber. In one embodiment, a showerhead assembly includes a gas distribution plate and a multi-piece frame assembly that circumscribes a perimeter edge of the gas distribution plate. The multi-piece frame assembly allows for expansion of the gas distribution plate without creating gaps which may lead to arcing. In other embodiments, the insulator is positioned to be have the electric fields concentrated at the perimeter of the gas distribution plate located therein, thereby reducing arcing potential.
    Type: Application
    Filed: May 29, 2015
    Publication date: October 1, 2015
    Inventors: Jozef KUDELA, Jonghoon BAEK, John M. WHITE, Robin TINER, Suhail ANWAR, Gaku FURUTA
  • Patent number: 9068262
    Abstract: Embodiments of the invention generally include shield frame assembly for use with a showerhead assembly, and a showerhead assembly having a shield frame assembly that includes an insulator that tightly fits around the perimeter of a showerhead in a vacuum processing chamber. In one embodiment, a showerhead assembly includes a gas distribution plate and a multi-piece frame assembly that circumscribes a perimeter edge of the gas distribution plate. The multi-piece frame assembly allows for expansion of the gas distribution plate without creating gaps which may lead to arcing. In other embodiments, the insulator is positioned to be have the electric fields concentrated at the perimeter of the gas distribution plate located therein, thereby reducing arcing potential.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: June 30, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jozef Kudela, Jonghoon Baek, John M. White, Robin Tiner, Suhail Anwar, Gaku Furuta
  • Patent number: 9048518
    Abstract: A transmission line RF applicator apparatus and method for coupling RF power to a plasma in a plasma chamber. The apparatus comprises an inner conductor and one or two outer conductors. The main portion of each of the one or two outer conductors includes a plurality of apertures that extend between an inner surface and an outer surface of the outer conductor.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: June 2, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Carl A. Sorensen, Suhail Anwar, John M. White, Ranjit Indrajit Shinde, Seon-Mee Cho, Douglas D. Truong
  • Patent number: 8992723
    Abstract: For coupling RF power from an RF input of a plasma chamber to the interior of a plasma chamber, an RF bus conductor is connected between the RF input and a plasma chamber electrode. In one embodiment, an RF return bus conductor is connected to an electrically grounded wall of the chamber, and the RF bus conductor and the RF return bus conductor have respective surfaces that are parallel and face each other. In another embodiment, the RF bus conductor has a transverse cross section having a longest dimension oriented perpendicular to the surface of the plasma chamber electrode that is closest to the RF bus conductor.
    Type: Grant
    Filed: February 13, 2010
    Date of Patent: March 31, 2015
    Assignee: Applied Material, Inc.
    Inventors: Carl A. Sorensen, Jozef Kudela, Robin L. Tiner, Suhail Anwar, John M. White
  • Patent number: 8906813
    Abstract: Methods for processing a substrate are described herein. Methods can include positioning a substrate in a processing chamber, maintaining the processing chamber at a temperature below 400° C., flowing a reactant gas comprising either a silicon hydride or a silicon halide and an oxidizing precursor into the process chamber, applying a microwave power to create a microwave plasma from the reactant gas, and depositing a silicon oxide layer on at least a portion of the exposed surface of a substrate.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: December 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Tae Kyung Won, Seon-Mee Cho, Soo Young Choi, Beom Soo Park, Dong-Kil Yim, John M. White, Jozef Kudela
  • Patent number: 8883269
    Abstract: A method of processing a substrate in a processing chamber is provided. The method generally includes applying a microwave power to an antenna coupled to a microwave source disposed within the processing chamber, wherein the microwave source is disposed relatively above a gas feeding source configured to provide a gas distribution coverage covering substantially an entire surface of the substrate, and exposing the substrate to a microwave plasma generated from a processing gas provided by the gas feeding source to deposit a silicon-containing layer on the substrate at a temperature lower than about 200 degrees Celsius, the microwave plasma using a microwave power having a power density of about 500 milliWatts/cm2 to about 5,000 milliWatts/cm2 at a frequency of about 1 GHz to about 10 GHz.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Tae Kyung Won, Helinda Nominanda, Seon-Mee Cho, Soo Young Choi, Beom Soo Park, John M. White, Suhail Anwar, Jozef Kudela
  • Patent number: 8872428
    Abstract: A plasma source includes upper and lower portions. In a first aspect, an electrical power source supplies greater power to the upper portion than to the lower portion. In a second aspect, the plasma source includes three or more power couplers that are spaced apart vertically, wherein the number of plasma power couplers in the upper portion is greater than the number of plasma power couplers in the lower portion. The upper and lower portions of the plasma source can be defined as respectively above and below a horizontal geometric plane that bisects the vertical height of the plasma source. Alternatively, the upper and lower portions can be defined as respectively above and below a horizontal geometric plane that bisects the combined area of first and second workpiece positions.
    Type: Grant
    Filed: February 25, 2012
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Suhail Anwar, Carl A. Sorensen, John M. White
  • Publication number: 20140216344
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jozef KUDELA, Carl A. SORENSEN, John M. WHITE