Patents by Inventor Juan Alejandro Herbsommer

Juan Alejandro Herbsommer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10605986
    Abstract: A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 31, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Benjamin S. Cook
  • Patent number: 10589986
    Abstract: An electronic device includes a package substrate, a circuit assembly, and a housing. The circuit assembly is mounted on the package substrate. The circuit assembly includes a first sealed cavity formed in a device substrate. The housing is mounted on the package substrate to form a second sealed cavity about the circuit assembly.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook, James F. Hallas, Randy Long
  • Patent number: 10551265
    Abstract: A pressure transducer includes a cavity, a first dipolar molecule disposed within the cavity, and a second dipolar molecule disposed within the cavity. The first dipolar molecule exhibits a quantum rotational state transition at a fixed frequency with respect to cavity pressure. The second dipolar molecule exhibits a quantum rotation state transition at a frequency that varies with cavity pressure.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Django Trombley, Adam Joseph Fruehling, Juan Alejandro Herbsommer
  • Patent number: 10549986
    Abstract: An illustrate method (and device) includes etching a cavity in a first substrate (e.g., a semiconductor wafer), forming a first metal layer on a first surface of the first substrate and in the cavity, and forming a second metal layer on a non-conductive structure (e.g., glass). The method also may include removing a portion of the second metal layer to form an iris to expose a portion of the non-conductive structure, forming a bond between the first metal layer and the second metal layer to thereby attach the non-conductive structure to the first substrate, sealing an interface between the non-conductive structure and the first substrate, and patterning an antenna on a surface of the non-conductive structure.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: February 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook, Adam Joseph Fruehling
  • Patent number: 10544039
    Abstract: Methods for depositing a measured amount of a species in a sealed cavity. In one example, a method for depositing molecules in a sealed cavity includes depositing a selected number of microcapsules in a cavity. Each of the microcapsules contains a predetermined amount of a first fluid. The cavity is sealed after the microcapsules are deposited. After the cavity is sealed the microcapsules are ruptured to release molecules of the first fluid into the cavity.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Kurt Wachtler, Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs
  • Patent number: 10520900
    Abstract: In described examples, an apparatus includes a physics cell and an electronic circuit. The physics cell includes an atomic chamber, a laser source, a modulator, a photodetector and a field coil. The electronic circuit includes a frequency synthesizer, a controller and a digital to analog converter.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: December 31, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bradley Allen Kramer, Benjamin Stassen Cook, Juan Alejandro Herbsommer
  • Patent number: 10498001
    Abstract: An apparatus includes a substrate containing a cavity and a dielectric structure covering at least a portion of the cavity. The cavity is hermetically sealed. The apparatus also may include a launch structure formed on the dielectric structure and outside the hermetically sealed cavity. The launch structure is configured to cause radio frequency (RF) energy flowing in a first direction to enter the hermetically sealed cavity through the dielectric structure in a direction orthogonal to the first direction. Various types of launch structures are disclosed herein.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Benjamin Stassen Cook, Juan Alejandro Herbsommer, Swaminathan Sankaran
  • Patent number: 10493722
    Abstract: A method includes forming a plurality of layers of an oxide and a metal on a substrate. For example, the layers may include a metal layer sandwiched between silicon oxide layers. A non-conductive structure such as glass is then bonded to one of the oxide layers. An antenna can then be patterned on the non-conductive structure, and a cavity can be created in the substrate. Another metal layer is deposited on the surface of the cavity, and an iris is patterned in the metal layer to expose the one of the oxide layers. Another metal layer is formed on a second substrate and the two substrates are bonded together to thereby seal the cavity.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Benjamin Stassen Cook, Simon Joshua Jacobs
  • Patent number: 10483609
    Abstract: A digital system has a dielectric core waveguide that is formed within a multilayer substrate. The dielectric waveguide has a longitudinal dielectric core member formed in the core layer having two adjacent longitudinal sides each separated from the core layer by a corresponding slot portion formed in the core layer The dielectric core member has the first dielectric constant value. A cladding surrounds the dielectric core member formed by a top layer and the bottom layer infilling the slot portions of the core layer. The cladding has a dielectric constant value that is lower than the first dielectric constant value.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: November 19, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Floyd Payne, Gerd Schuppener, Juan Alejandro Herbsommer
  • Publication number: 20190346814
    Abstract: A millimeter wave apparatus, with a substrate, a transceiver in a first fixed position relative to the substrate, and a gas cell in a second fixed position relative to the substrate. The clock apparatus also comprises at least four waveguides.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 14, 2019
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Argyrios Dellis
  • Publication number: 20190334220
    Abstract: A wave communication system includes an integrated circuit and a multilayered substrate. The multilayered substrate is electrically coupled to the integrated circuit. The multilayered substrate includes an antenna structure configured to transmit a circularly polarized wave in response to signals from the integrated circuit.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 31, 2019
    Inventors: Hassan Omar Ali, Juan Alejandro Herbsommer, Benjamin Cook, Swaminathan Sankaran
  • Patent number: 10444102
    Abstract: A pressure transducer includes a cavity, dipolar molecules disposed within the cavity, and pressure measurement circuitry. The pressure measurement circuitry is configured to measure a width of an absorption peak of the dipolar molecules, and to determine a value of pressure in the cavity based on the width of the absorption peak.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 15, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Adam Joseph Fruehling, Swaminathan Sankaran, Benjamin Stassen Cook
  • Patent number: 10424523
    Abstract: A method for forming a sealed cavity includes bonding a non-conductive structure to a first substrate to form a non-conductive aperture into the first substrate. On a surface of the non-conductive structure opposite the first substrate, the method includes depositing a first metal layer. The method further includes patterning a first iris in the first metal layer, depositing a first dielectric layer on a surface of the first metal layer opposite the non-conductive structure, and patterning an antenna on a surface of the first dielectric layer opposite the first metal layer. The method also includes creating a cavity in the first substrate, depositing a second metal layer on a surface of the cavity, patterning a second iris in the second metal layer, and bonding a second substrate to a surface of the first substrate opposite the non-conductive structure to thereby seal the cavity.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 24, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Adam Joseph Fruehling, Juan Alejandro Herbsommer, Simon Joshua Jacobs, Benjamin Stassen Cook
  • Patent number: 10416095
    Abstract: A dielectric waveguide (DWG) may be used to identify a composition of a material that is in contact with the DWG. A radio frequency (RF) signal is transmitted into a dielectric waveguide located in contact with the material. The RF signal is received after it passes through the DWG. An insertion loss of the DWG is determined. The presence of the material may be inferred when the insertion loss exceeds a threshold value. The composition of the material may be inferred based on a correlation with the insertion loss. Alternatively, a volume of the material may be inferred based on a correlation with the insertion loss.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 17, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Robert Floyd Payne
  • Patent number: 10390433
    Abstract: Described examples include methods of fabricating conductive and resistive structures by direct-write variable impedance patterning using nanoparticle-based metallization layers or chemical reaction-based deposition. In some examples, a low conductivity nanoparticle material is deposited over a surface. The nanoparticle material is selectively illuminated at different applied energy levels via illumination source power adjustments and/or scan rate adjustments for selective patterned sintering to create conductive circuit structures as well as resistive circuit structures including gradient resistive circuit structures having an electrical resistivity profile that varies along the structure length. Further examples include methods in which a non-conductive reactant layer is deposited or patterned, and a second solution is deposited in varying amounts using an additive deposition for reaction with the reactant layer to form controllably conductive structures.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: August 20, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Benjamin S. Cook, Juan Alejandro Herbsommer
  • Publication number: 20190243065
    Abstract: A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Juan Alejandro Herbsommer, Benjamin S. Cook
  • Patent number: 10370760
    Abstract: Described examples include a method of fabricating a gas cell, including forming a cavity in a first substrate, providing a nonvolatile precursor material in the cavity of the first substrate, bonding a second substrate to the first substrate to form a sealed cavity including the nonvolatile precursor material in the cavity, and activating the precursor material after or during forming the sealed cavity to release a target gas inside the sealed cavity.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 6, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Simon Joshua Jacobs, Juan Alejandro Herbsommer, Adam Joseph Fruehling
  • Patent number: 10364144
    Abstract: Disclosed examples provide gas cells and a method of fabricating a gas cell, including forming a cavity in a first substrate, forming a first conductive material on a sidewall of the cavity, forming a glass layer on the first conductive material, forming a second conductive material on a bottom side of a second substrate, etching the second conductive material to form apertures through the second conductive material, forming conductive coupling structures on a top side of the second substrate, and bonding a portion of the bottom side of the second substrate to a portion of the first side of the first substrate to seal the cavity.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 30, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan Alejandro Herbsommer, Adam Joseph Fruehling, Simon Joshua Jacobs
  • Publication number: 20190204787
    Abstract: A clock apparatus with: (i) a gas cell, including a continuous path cavity including a sealed interior for providing a signal waveguide; (ii) an apparatus for providing an electromagnetic wave to travel along the continuous path cavity and for circulating around the continuous path cavity back toward and past a point of entry of the electromagnetic wave in the continuous path cavity; (iii) a dipolar gas inside the sealed interior of the cavity; and (iv) receiving apparatus for detecting an amount of energy in the electromagnetic wave, wherein the amount of energy is responsive to an amount of absorption of the electromagnetic wave as the electromagnetic wave passes through the dipolar gas.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Inventors: Juan Alejandro Herbsommer, Bichoy Bahr, Argyrios Dellis, Adam Joseph Fruehling
  • Publication number: 20190204788
    Abstract: A clock apparatus with a gas cell. The gas cell includes: (i) a first chamber including a sealed interior for providing a signal waveguide; and (ii) a second chamber, in fluid communication with the first chamber, and comprising apparatus for directing atoms having a selected velocity vector into the first chamber.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Inventors: Argyrios Dellis, Juan Alejandro Herbsommer, Adam Joseph Fruehling