Patents by Inventor Juan Santiago

Juan Santiago has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120004781
    Abstract: System, method, and computer program product for dampening oscillations of the electrical power on a power grid. The system includes a wind park with multiple wind turbines. Each wind turbine includes a rotor, a generator operatively coupled with the rotor for generating electrical power, and an inverter coupling the generator with the power grid to output the electrical power to the power grid. A controller is configured to generate a first control signal to cause the inverter of the first wind turbine to modulate the electrical power output by the first wind turbine for dampening oscillations of one frequency in electrical power on the power grid and to generate a second control signal to cause the inverter of the second wind turbine to modulate the electrical power output by the second wind turbine for dampening oscillations of a different frequency in the electrical power on the power grid.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Juan Santiago Santos, Brett D. Rollow, Jason Hoffman
  • Patent number: 7799453
    Abstract: Water flooding at the cathode of a fuel cell is a common problem in fuel cells. By integrating an electroosmotic (EO) pump to remove product water from the cathode area, fuel cell power can be increased. Integration of EO pumps transforms the designs of air channel and air breathing cathodes, reducing air pumping power loads and increasing oxidant transport. Hydration of gas streams, management of liquid reactants, and oxidant delivery can also be accomplished with integrated electroosmotic pumps. Electroosmotic pumps have no moving parts, can be integrated as a layer of the fuel cell, and scale with centimeter to micron scale fuel cells.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 21, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd.
    Inventors: Juan Santiago, Jonathan Posner, Friedrich B. Prinz, Tibor Fabian, John Eaton, Suk-Won Cha, Cullen Buie, Daejoogn Kim, Hideaki Tsuru, Jun Sasahara, Tadahiro Kubota, Yuji Saito
  • Patent number: 7645368
    Abstract: According to some embodiments, a method, system, and apparatus for providing an orientation independent electroosmotic pump. In some embodiments, the method includes an anode and a cathode at different electrical potentials, the anode and cathode are each sealed in an ion-exchange membrane and at least partially immersed in an electrolyte contained in a reservoir of an electroosmotic pump, collecting gases generated by electrolytic decomposition of the electrolyte within a space defined by the ion-exchange membranes that seal the anode and cathode, recombining the collected gases to produce a liquid using a catalyst, the catalyst being located outside of the reservoir, and introducing the produced liquid into the fluid reservoir through an osmotic membrane.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: January 12, 2010
    Assignee: Intel Corporation
    Inventors: Alan M. Myers, Juan Santiago, Shuhuai Yao, Jonathan D. Posner
  • Publication number: 20090061601
    Abstract: Various embodiments of the present invention comprise systems and methods of fabricating porous silicon. One application of such porous silicon is in the fabrication of electro-osmotic pumps and electro-osmotic pump substrates. The method can comprise operations performed on a silicon wafer. A liner material can be deposited on the silicon wafer, and a photoresist layer can be deposited on the liner material. The photoresist layer can be adapted to define a predetermined pattern on the silicon wafer. Then, porous silicon can be formed on the silicon wafer according to the predefined pattern. As a result, solid silicon can support porous silicon regions of the silicon wafer, providing a support structure for the pumping medium. Other embodiments, aspects, and features are also claimed and described.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 5, 2009
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao
  • Patent number: 7458783
    Abstract: A pumping medium for an electro-osmotic pump made of porous silicon. The porous silicon may result in a lower required pumping voltage and a smaller form factor for an equivalent flow rate and pressure generation as compared to conventional glass frits. The porous silicon may also provide a better thermodynamic efficiency over conventional glass frits for use in electro-osmotic pumps. The increased efficiency of the porous silicon may provide an low-power, high flow rate, high pressure, small form factor, vibration-free pump for cooling microelectronic devices, such as integrated circuit chips.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: December 2, 2008
    Assignee: Intel Corporation
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao
  • Patent number: 7449122
    Abstract: An electrokinetic pump for pumping a liquid includes a pumping body having a plurality of narrow, short and straight pore apertures for channeling the liquid through the body. A pair of electrodes for applying a voltage differential are formed on opposing surfaces of the pumping body at opposite ends of the pore apertures. The pumping body is formed on a support structure to maintain a mechanical integrity of the pumping body. The pump can be fabricated using conventional semiconductor processing steps. The pores are preferably formed using plasma etching. The structure is oxidized to insulate the structure and also narrow the pores. A support structure is formed by etching a substrate and removing an interface oxide layer. Electrodes are formed to apply a voltage potential across the pumping body. Another method of fabricating an electrokinetic pump includes providing etch stop alignment marks so that the etch step self-terminates.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: November 11, 2008
    Assignee: Cooligy Inc.
    Inventors: David Corbin, Kenneth Goodson, Thomas Kenny, Juan Santiago, Shulin Zeng
  • Publication number: 20080032169
    Abstract: A method and device for fuel cell heat and water management is provided. A thermally and electrically conductive hydrophilic heat and mass transport element is provided to the fuel cell spanning from inside to outside the cell. The transport element is deposited between current collector and gas diffusion layers, where heat is transported along the transport element from an interior portion of the element inside the cell to an exterior portion of the element outside the cell. Liquid water is transported along the element into or out of the cell, and heat is removed from the exterior portion by any combination of radiation, free convection and forced convection, and where the liquid water is removed from the exterior portion by any combination of convection driven evaporation and advection. The water is added to the cell from the exterior to the interior by any combination of advection and capillary wicking.
    Type: Application
    Filed: May 24, 2007
    Publication date: February 7, 2008
    Inventors: Tibor Fabian, Shawn Litster, Juan Santiago, Cullen Bule, Jun Sasahara, Tadahiro Kubota
  • Publication number: 20070284253
    Abstract: A polymer electrolyte membrane fuel cell water management device is provided. The device includes a hydrophilic water transport element spanning from inside the fuel cell to outside the fuel cell and disposed between a gas diffusion layer and a current collector layer in the cell. The transport element includes an intermediate wick outside the fuel cell that is hydraulically coupled to the transport element, and has a transport element structure integrated with a flow field structure within the fuel cell. The device further includes an electroosmotic pump, where the pump is located outside the fuel cell and is hydraulically coupled to the intermediate wick. The hydraulically coupled pump actively removes excess water from the flow field structure and the gas diffusion layer through the transport element, where a key aspect of the invention is the decoupling of water removal from oxidant delivery and reduced parasitic loads.
    Type: Application
    Filed: May 24, 2007
    Publication date: December 13, 2007
    Inventors: Tibor Fabian, Shawn Litster, Juan Santiago, Cullen Bule, Hldeakl Tsuru, Jun Sasahara, Tadahlro Kubota
  • Publication number: 20070009366
    Abstract: An “in-plane” electroosmotic pump may reduce deterioration of performance due to electrolytic gas generation. By controlling the flow of gas generated at the electrodes, while allowing ionic current, the gas may be prevented from fouling the narrow slots which act as pumping channels.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 11, 2007
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao, Jonathan Posner
  • Publication number: 20060254913
    Abstract: According to some embodiments, a method, system, and apparatus for providing an orientation independent electroosmotic pump. In some embodiments, the method includes an anode and a cathode at different electrical potentials, the anode and cathode are each sealed in an ion-exchange membrane and at least partially immersed in an electrolyte contained in a reservoir of an electroosmotic pump, collecting gases generated by electrolytic decomposition of the electrolyte within a space defined by the ion-exchange membranes that seal the anode and cathode, recombining the collected gases to produce a liquid using a catalyst, the catalyst being located outside of the reservoir, and introducing the produced liquid into the fluid reservoir through an osmotic membrane.
    Type: Application
    Filed: May 10, 2005
    Publication date: November 16, 2006
    Inventors: Alan Myers, Juan Santiago, Shuhuai Yao, Jonathan Posner
  • Patent number: 7086839
    Abstract: An electroosmotic pump and method of manufacturing thereof. The pump having a porous structure adapted to pump fluid therethrough, the porous structure comprising a first side and a second side, the porous structure having a plurality of fluid channels therethrough, the first side having a first continuous layer of electrically conductive porous material deposited thereon and the second side having a second continuous layer of electrically conductive porous material deposited thereon, the first second layers coupled to a power source, wherein the power source supplies a voltage differential between the first layer and the second layer to drive fluid through the porous structure at a desired flow rate. The continuous layer of electrically conductive porous material is preferably a thin film electrode, although a multi-layered electrode, screen mesh electrode and beaded electrode are alternatively contemplated.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: August 8, 2006
    Assignee: Cooligy, Inc.
    Inventors: Thomas W. Kenny, James Gill Shook, Shulin Zeng, Daniel J. Lenehan, Juan Santiago, James Lovette
  • Publication number: 20060049369
    Abstract: A method and apparatus for measuring fluid motion with micron scale spatial resolution, in which fluorescent particles are injected into a fluid body in a test device, the test device is broadly illuminated with pulses of light at the excitation frequency of the fluorescent particles, the fluorescent light is collected by a microscope objective lens, and the light thus collected is relayed through a fluorescent filter to an image recording device, the depth of field of the objective lens defining the thickness of a two-dimensional measurement plane.
    Type: Application
    Filed: November 13, 2003
    Publication date: March 9, 2006
    Inventors: Carl Meinhart, Juan Santiago, Ronald Adrian, Steve Wereley
  • Publication number: 20060042948
    Abstract: A capillary electrophoresis device and separation protocol uses a hydraulic resistance-providing structure (HRPS) in the main separation channel to separate the divide the main separate channel into an upstream portion and a downstream portion. The HRPS may take the form of a porous plug, or a solid plug provided with at least one shallow channel. A sample separates and migrates through the porous structure or the shallow channel, upon application of a voltage difference between the upstream and downstream sides. Among other things, the HRPS helps reduce electrokinetic flow in the presence of conductivity gradients and facilitates robust, high-gradient on-chip field amplified sample stacking. The HRPS also enables the use of a pressure-injection scheme for the introduction of a high conductivity gradient in a separation channel and thereby avoids flow instabilities associated with high conductivity gradient electrokinetics.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Juan Santiago, Byoungsok Jung, Rajiv Bharadwaj
  • Publication number: 20060029851
    Abstract: Water flooding at the cathode of a fuel cell is a common problem in fuel cells. By integrating an electroosmotic (EO) pump to remove product water from the cathode area, fuel cell power can be increased. Integration of EO pumps transforms the designs of air channel and air breathing cathodes, reducing air pumping power loads and increasing oxidant transport. Hydration of gas streams, management of liquid reactants, and oxidant delivery can also be accomplished with integrated electroosmotic pumps. Electroosmotic pumps have no moving parts, can be integrated as a layer of the fuel cell, and scale with centimeter to micron scale fuel cells.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 9, 2006
    Inventors: Juan Santiago, Jonathan Posner, Friedrich Prinz, Tibor Fabian, John Eaton, Suk-Won Cha, Cullen Buie, Daejoogn Kim, Hideaki Tsuru, Jun Sasahara, Tadahiro Kubota, Yuji Saito
  • Publication number: 20050205241
    Abstract: Apparatus and methods according to the present invention utilize micropumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These micropumps are fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These micropumps also can allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the spatial and temporal characteristics of the device temperature profiles. Novel enclosed microchannel structures are also described.
    Type: Application
    Filed: May 25, 2005
    Publication date: September 22, 2005
    Inventors: Kenneth Goodson, Chuan-Hua Chen, David Huber, Linan Jiang, Thomas Kenny, Jae-Mo Koo, Daniel Laser, James Mikkelsen, Juan Santiago, Evelyn Wang, Shulin Zeng, Lian Zhang
  • Publication number: 20050098299
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long,-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Application
    Filed: September 2, 2004
    Publication date: May 12, 2005
    Inventors: Kenneth Goodson, Chuan-Hua Chen, David Huber, Linan Jiang, Thomas Kenny, Jae-Mo Koo, Daniel Laser, James Mikkelsen, Juan Santiago, Evelyn Wang, Shulin Zeng, Lian Zhang
  • Publication number: 20050094374
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Application
    Filed: June 30, 2004
    Publication date: May 5, 2005
    Inventors: Thomas Kenny, Kenneth Goodson, Juan Santiago, George Carl Everett
  • Publication number: 20050084385
    Abstract: An electrokinetic pump for pumping a liquid includes a pumping body having a plurality of narrow, short and straight pore apertures for channeling the liquid through the body. A pair of electrodes for applying a voltage differential are formed on opposing surfaces of the pumping body at opposite ends of the pore apertures. The pumping body is formed on a support structure to maintain a mechanical integrity of the pumping body. The pump can be fabricated using conventional semiconductor processing steps. The pores are preferably formed using plasma etching. The structure is oxidized to insulate the structure and also narrow the pores. A support structure is formed by etching a substrate and removing an interface oxide layer. Electrodes are formed to apply a voltage potential across the pumping body. Another method of fabricating an electrokinetic pump includes providing etch stop alignment marks so that the etch step self-terminates.
    Type: Application
    Filed: October 18, 2004
    Publication date: April 21, 2005
    Inventors: David Corbin, Kenneth Goodson, Thomas Kenny, Juan Santiago, Shulin Zeng
  • Patent number: 6881039
    Abstract: An electrokinetic pump for pumping a liquid includes a pumping body having a plurality of narrow, short and straight pore apertures for channeling the liquid through the body. A pair of electrodes for applying a voltage differential are formed on opposing surfaces of the pumping body at opposite ends of the pore apertures. The pumping body is formed on a support structure to maintain a mechanical integrity of the pumping body. The pump can be fabricated using conventional semiconductor processing steps. The pores are preferably formed using plasma etching. The structure is oxidized to insulate the structure and also narrow the pores. A support structure is formed by etching a substrate and removing an interface oxide layer. Electrodes are formed to apply a voltage potential across the pumping body. Another method of fabricating an electrokinetic pump includes providing etch stop alignment marks so that the etch step self-terminates.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: April 19, 2005
    Assignee: Cooligy, Inc.
    Inventors: David Corbin, Kenneth Goodson, Thomas Kenny, Juan Santiago, Shulin Zeng
  • Publication number: 20050042110
    Abstract: An electrokinetic pump for pumping a liquid includes a pumping body having a plurality of narrow, short and straight pore apertures for channeling the liquid through the body. A pair of electrodes for applying a voltage differential are formed on opposing surfaces of the pumping body at opposite ends of the pore apertures. The pumping body is formed on a support structure to maintain a mechanical integrity of the pumping body. The pump can be fabricated using conventional semiconductor processing steps. The pores are preferably formed using plasma etching. The structure is oxidized to insulate the structure and also narrow the pores. A support structure is formed by etching a substrate and removing an interface oxide layer. Electrodes are formed to apply a voltage potential across the pumping body. Another method of fabricating an electrokinetic pump includes providing etch stop alignment marks so that the etch step self-terminates.
    Type: Application
    Filed: February 12, 2003
    Publication date: February 24, 2005
    Inventors: David Corbin, Kenneth Goodson, Thomas Kenny, Juan Santiago, Shulin Zeng