Patents by Inventor Jude Samulski

Jude Samulski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190262373
    Abstract: The present invention provides AAV capsid proteins comprising a modification in the amino acid sequence and virus capsids and virus vectors comprising the modified AAV capsid protein. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Application
    Filed: August 16, 2017
    Publication date: August 29, 2019
    Inventors: Kenton Woodard, Richard Jude Samulski
  • Publication number: 20190185823
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 20, 2019
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Patent number: 10233428
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: March 19, 2019
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Publication number: 20190048363
    Abstract: This invention relates to viral vectors for delivery of alpha-L-iduronidase to the cornea of a subject and methods of using the same for treatment and prevention of corneal clouding and blindness in a subject due to mucopolysaccharidosis I.
    Type: Application
    Filed: February 22, 2017
    Publication date: February 14, 2019
    Inventors: Matthew Louis Hirsch, Richard Jude Samulski
  • Publication number: 20180371496
    Abstract: The present invention provides a polyploid adeno-associated virus (AAV) capsid, wherein the capsid comprises capsid protein VP1, wherein said capsid protein VP1 is from one or more than one first AAV serotype, wherein said capsid protein VP2 is from one or more than one first AAV serotype and capsid protein VP3, wherein said capsid protein VP3 is from one or more than one second AAV serotype and wherein at least one of said first AAV serotype is different from at least one of said second AAV serotype and is different from at least one of said third AAV serotype, in any combination.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 27, 2018
    Inventors: Chengwen Li, Richard Jude Samulski
  • Publication number: 20180116959
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 3, 2018
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Patent number: 9877920
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: January 30, 2018
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Patent number: 9475845
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 25, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Aravind Asokan, Richard Jude Samulski
  • Patent number: 9447433
    Abstract: This invention relates to synthetic adeno-associated virus (AAV) inverted terminal repeats (ITRs) that exhibit altered activities compared to a naturally occurring AAV ITR and methods of using the same for delivery of nucleic acids to a cell or a subject. The synthetic ITRs provide a larger packaging capacity and the ability to manipulate activities such as transduction efficiency, cellular response to transduction, and transcription.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 20, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Matthew Louis Hirsch, Richard Jude Samulski
  • Patent number: 9441206
    Abstract: This invention relates to a HEK293 cell line that grows under animal component-free suspension conditions. The cell line is ideal for rapid and scalable production of adeno-associated virus (AAV) and supports production of all serotypes and chimera of AAV.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: September 13, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joshua Grieger, Richard Jude Samulski
  • Publication number: 20160102297
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Application
    Filed: October 26, 2015
    Publication date: April 14, 2016
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Publication number: 20160038418
    Abstract: Nano-particles are molded in nano-scale molds fabricated from non-wetting, low surface energy polymeric materials. The nano-particles can include pharmaceutical compositions, taggants, contrast agents, biologic drugs, drug compositions, organic materials, and the like. The molds can be virtually any shape and less than 10 micron in cross-sectional diameter.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 11, 2016
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Ansley Exner Dennis, Edward T. Samulski, R. Jude Samulski, Benjamin W. Maynor, Larken E. Cumberland, Ginger Denison Rothrock, Stephanie Barrett, Alexander Ermoshkin, Andrew James Murphy
  • Patent number: 9169492
    Abstract: The present invention provides methods and compositions for enhanced transduction of an adeno-associated virus (AAV) vector comprising a heterologous nucleic acid of interest wherein the AAV vector genome is oversized relative to a wild type AAV genome by employing a proteasome inhibitor.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: October 27, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Paul E. Monahan, Richard Jude Samulski
  • Patent number: 9169494
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 27, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Publication number: 20150283079
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 8, 2015
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Publication number: 20150152142
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Application
    Filed: November 17, 2014
    Publication date: June 4, 2015
    Inventors: ARAVIND ASOKAN, RICHARD JUDE SAMULSKI
  • Patent number: 9012224
    Abstract: The present invention is based, in part, on the discovery that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. The inventors have discovered that in some cases as little as a single amino acid insertion or substitution from a first parvovirus (e.g., an AAV) into the capsid structure of another parvovirus (e.g., an AAV) to create a chimeric parvovirus is sufficient to confer one or more of the desirable properties of the first parvovirus to the resulting chimeric parvovirus and/or to confer a property that is not exhibited by the first parvovirus or is present to a lesser extent.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: April 21, 2015
    Assignees: The University of North Carolina at Chapel Hill, The University of Florida Research Foundation
    Inventors: Dawn E. Bowles, Chengwen Li, Joseph E. Rabinowitz, Josh Grieger, Mavis Agbandje-McKenna, Richard Jude Samulski
  • Patent number: 8992992
    Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 31, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
  • Patent number: 8889641
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 18, 2014
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Aravind Asokan, Richard Jude Samulski
  • Publication number: 20140271551
    Abstract: This invention relates to synthetic adeno-associated virus (AAV) inverted terminal repeats (ITRs) that exhibit altered activities compared to a naturally occurring AAV ITR and methods of using the same for delivery of nucleic acids to a cell or a subject. The synthetic ITRs provide a larger packaging capacity and the ability to manipulate activities such as transduction efficiency, cellular response to transduction, and transcription.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: MATTHEW LOUIS HIRSCH, RICHARD JUDE SAMULSKI