Patents by Inventor Juergen Biener

Juergen Biener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959183
    Abstract: A product includes a dilute alloy catalyst for carbon dioxide reduction. The catalyst has a majority component and at least one minority component. The majority component is present in a concentration of greater than 90 atomic percent of the catalyst. The majority component is copper, and each minority component is selected from the group consisting of: a transition metal, a main group metal, a lanthanide, and a semimetal. A method includes forming a product on a cathode. The product includes a dilute alloy catalyst for carbon dioxide reduction. The catalyst has a majority component and at least one minority component. The majority component is present in a concentration of greater than 90 atomic percent of the catalyst. The majority component is copper, and each minority component is selected from the group consisting of: a transition metal, a main group metal, a lanthanide, and a semimetal.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: April 16, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Sneha Akhade, Monika Biener, Zhen Qi, Joel Varley, Stephen Weitzner, Vedasri Vedharathinam
  • Patent number: 11833488
    Abstract: In one embodiment, a product includes a nanoporous gold structure comprising a plurality of ligaments, and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 5, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 11807946
    Abstract: A method of controlling macroscopic strain of a porous structure includes contacting a porous structure with a modifying agent which chemically adsorbs to a surface of the porous structure and modifies an existing surface stress of the porous structure. Additional methods and systems are also presented.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 7, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Monika M. Biener, Alex V. Hamza, Marcus Baeumer, Arne Wittstock, Joerg Weissmueller, Dominik Kramer, Raghavan Nadar Viswanath
  • Publication number: 20230274174
    Abstract: A vertical ion trap include at least four RF electrodes on a substrate, the RF electrodes extending up from the substrate, a region between the electrodes forming the vertical ion trap, and at least two direct current electrodes adjacent the RF electrodes and the vertical ion trap. A horizontal ion traps includes a substrate, the substrate having a hole, at least one RF electrodes raised above the substrate and offset from each other across the hole, the RF electrodes, and at least one DC electrode corresponding to each RF electrode, the DC electrodes raised above the substrate. A method of forming an ion trap includes forming three-dimensional structures on a substrate in a curable polymer using two-photon polymerization direct laser writing, metalizing the three-dimensional structures to form RF electrodes, and forming direct current electrodes at least partially on the substrate.
    Type: Application
    Filed: July 14, 2021
    Publication date: August 31, 2023
    Inventors: JUERGEN BIENER, HARTMUT HAEFFNER, CLEMENS MATTHIESEN, ELI MEGIDISH, JAMES SPENCER OAKDALE, XIAOXING XIA
  • Publication number: 20230106574
    Abstract: A method includes acquiring a three-dimensional printed template created using an additive manufacturing technique, infilling the template with an aerogel precursor solution, allowing formation of a sol-gel, and converting the sol-gel to an aerogel.
    Type: Application
    Filed: November 30, 2022
    Publication date: April 6, 2023
    Inventors: Swetha Chandrasekaran, Theodore F. Baumann, Juergen Biener, Patrick Campbell, James S. Oakdale, Marcus A. Worsley
  • Patent number: 11596916
    Abstract: In one embodiment, a method includes acquiring a three-dimensional printed template created using an additive manufacturing technique, infilling the template with an aerogel precursor solution, allowing formation of a sol-gel, and converting the sol-gel to an aerogel. In another embodiment, a product includes an aerogel having inner channels corresponding to outer walls of a three-dimensional printed template around which the aerogel was formed.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: March 7, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Swetha Chandrasekaran, Theodore F. Baumann, Juergen Biener, Patrick Campbell, James S. Oakdale, Marcus A. Worsley
  • Patent number: 11542613
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 3, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam
  • Publication number: 20220209277
    Abstract: The present disclosure relates to an electrical energy storage apparatus. The apparatus has an interpenetrating, three dimensional periodic structure formed from an ionically conductive solid electrolyte material having a plurality of interpenetrating, non-planar channels. The interpenetrating, non-planar channels are made up of a first plurality of channels filled with an anode material, a second plurality of channels adjacent the first plurality of channels and interpenetrating with the first plurality of channels, and filled with a cathode material, and a third plurality of channels adjacent to, and interpenetrating with, one of the first and second pluralities of channels, and filled with a material to form a separator. The first, second and third channels form a spatially dense, three dimensional structure. A first non-flat current collector layer is incorporated which is in communication with the first plurality of channels, and which forms a first electrode.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Eric DUOSS, Juergen BIENER, Patrick CAMPBELL, Julie A. JACKSON, Geoffrey M. OXBERRY, Christopher SPADACCINI, Michael STADERMANN, Cheng ZHU, Bradley TREMBACKI, Jayathi MURTHY, Matthew MERRILL
  • Publication number: 20220193992
    Abstract: An optically clear resin for additive manufacturing includes an optically clear ceramic precursor having a pre-defined refractive index. Each molecule of the ceramic precursor has at least two photopolymerizable functional groups, at least one of the photopolymerizable functional groups being functionalized with a refractive index-tuning group thereby causing the ceramic precursor to have the pre-defined refractive index.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Magi Mettry, Juergen Biener, James S. Oakdale
  • Patent number: 11309574
    Abstract: The present disclosure relates to an electrical energy storage apparatus which forms an interpenetrating, three dimensional structure. The structure may have a first non-planar channel filled with an anode material to form an anode, and a second non-planar channel adjacent the first non-planar channel filled with a cathode material to form a cathode. A third non-planar channel may be formed adjacent the first and second non-planar channels and filled with an electrolyte. The first, second and third channels are formed so as to be interpenetrating and form a spatially dense, three dimensional structure. A first current collector is in communication with the first non-planar channel and forms a first electrode, while a second current collector is in communication with the second non-planar channel and forms a second electrode. A separator layers separates the current collectors.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: April 19, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric Duoss, Juergen Biener, Patrick Campbell, Julie A. Jackson, Geoffrey M. Oxberry, Christopher Spadaccini, Michael Stadermann, Cheng Zhu, Bradley Trembacki, Jayathi Murthy, Matthew Merrill
  • Publication number: 20220032369
    Abstract: The present disclosure relates to a system for using a feedstock to form a three dimensional, hierarchical, porous metal structure with deterministically controlled 3D multiscale porous architectures. The system may have a reservoir for holding the feedstock, the feedstock including a rheologically tuned alloy ink. A printing stage may be used for receiving the feedstock. A processor may be incorporated which has a memory, and which is configured to help carry out an additive manufacturing printing process to produce a three dimensional (3D) structure using the feedstock in a layer-by-layer fashion, on the printing stage. A nozzle may be included for applying the feedstock therethrough onto the printing stage.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Zhen QI, Juergen BIENER, Wen CHEN, Eric DUOSS, Christopher SPADACCINI, Marcus A. WORSLEY, Jianchao YE, Cheng ZHU
  • Patent number: 11173545
    Abstract: The present disclosure relates to a method for forming a three dimensional, hierarchical, porous metal structure with deterministically controlled 3D multiscale pore architectures. The method may involve providing a feedstock able to be applied in an additive manufacturing process, and using an additive manufacturing process to produce a three dimensional (3D) structure using the feedstock. The method may involve further processing the 3D structure through at least a de-alloying operation to form a metallic 3D structure having an engineered, digitally controlled macropore morphology with integrated nanoporosity.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 16, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Zhen Qi, Juergen Biener, Wen Chen, Eric Duoss, Christopher Spadaccini, Marcus A. Worsley, Jianchao Ye, Cheng Zhu
  • Publication number: 20210317587
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam
  • Patent number: 11103832
    Abstract: According to one embodiment, a composition of matter includes: a first system of continuous voids arranged in a three-dimensional matrix; a second system of continuous voids arranged in the three-dimensional matrix; and a nanoporous barrier separating the first system of continuous voids and the second system of continuous voids. The first system of continuous voids and the second system of continuous voids are interwoven but independent so as to form a plurality of channels through the three-dimensional matrix. Corresponding methods for forming the composition of matter are also disclosed.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 31, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jianchao Ye, Andreas C. Baumgaertel, Juergen Biener, Monika M. Biener, Sangil Kim
  • Patent number: 11053597
    Abstract: A flow-through electrolysis cell includes a hierarchical nanoporous metal cathode. A method of reducing CO2 includes flowing the CO2 through the hierarchical nanoporous metal cathode of the flow-through electrolysis cell.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 6, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Monika M. Biener, Juergen Biener, Siwei Liang, Zhen Qi, Michael Stadermann, Vedasri Vedharathinam
  • Publication number: 20210147989
    Abstract: A product includes a dilute alloy catalyst for carbon dioxide reduction. The catalyst has a majority component and at least one minority component. The majority component is present in a concentration of greater than 90 atomic percent of the catalyst. The majority component is copper, and each minority component is selected from the group consisting of: a transition metal, a main group metal, a lanthanide, and a semimetal. A method includes forming a product on a cathode. The product includes a dilute alloy catalyst for carbon dioxide reduction. The catalyst has a majority component and at least one minority component. The majority component is present in a concentration of greater than 90 atomic percent of the catalyst. The majority component is copper, and each minority component is selected from the group consisting of: a transition metal, a main group metal, a lanthanide, and a semimetal.
    Type: Application
    Filed: October 1, 2020
    Publication date: May 20, 2021
    Inventors: Juergen Biener, Sneha Akhade, Monika Biener, Zhen Qi, Joel Varley, Stephen Weitzner, Vedasri Vedharathinam
  • Publication number: 20200317870
    Abstract: In one embodiment, a mixture includes a polyfunctional monomer having at least one functional group amenable to polymerization, a porogen, and a polymerization initiator. In another embodiment, a product includes a porous three-dimensional structure formed by additive manufacturing, where the porous three-dimensional structure has ligaments arranged in a geometric pattern, the ligaments defining pores therebetween. The pores have an average diameter greater than about 10 microns, where an average length scale of the ligaments is greater than 100 nanometers. The ligaments are nanoporous, where at least 80% of a volume measured according to outer dimensions of the porous three-dimensional structure corresponds to the pores.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 8, 2020
    Inventors: Siwei Liang, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Bryan D. Moran, James Oakdale, Jianchao Ye
  • Patent number: 10744488
    Abstract: The invention relates to nanoporous gold nanoparticle catalysts formed by exposure of nanoporous gold to ozone at elevated temperatures, as well as methods for production of esters and other compounds.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 18, 2020
    Assignees: President and Fellows of Harvard College, Lawrence Livermore National Security, LLC
    Inventors: Cynthia M. Friend, Robert J. Madix, Branko Zugic, Lucun Wang, Michelle L. Personick, Juergen Biener, Monika Margarete Biener
  • Patent number: 10647580
    Abstract: In one embodiment, a composition of matter includes: a plurality of ligaments each independently comprising one or more layers of graphene; where the plurality of ligaments are arranged according to a deterministic three-dimensional (3D) pattern. In another embodiment, a method of forming a deterministic three-dimensional (3D) architecture of graphene includes: forming or providing a substrate structurally characterized by a predefined 3D pattern; forming one or more layers of metal on surfaces of the substrate; and forming one or more layers of graphene on surfaces of the metal.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: May 12, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jianchao Ye, Juergen Biener, Patrick Campbell, Wen Chen, Julie A. Jackson, Bryan D. Moran, James Oakdale, William Smith, Christopher Spadaccini, Marcus A. Worsley, Xiaoyu Zheng
  • Patent number: 10633255
    Abstract: Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 28, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Elizabeth Montalvo, Marcus Worsley, Monika M. Biener, Maira Raquel Ceron Hernandez