Patents by Inventor Juergen Biener

Juergen Biener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170149083
    Abstract: The present disclosure relates to an electrical energy storage apparatus which forms an interpenetrating, three dimensional structure. The structure may have a first non-planar channel filled with an anode material to form an anode, and a second non-planar channel adjacent the first non-planar channel filled with a cathode material to form a cathode. A third non-planar channel may be formed adjacent the first and second non-planar channels and filled with an electrolyte. The first, second and third channels are formed so as to be interpenetrating and form a spatially dense, three dimensional structure. A first current collector is in communication with the first non-planar channel and forms a first electrode, while a second current collector is in communication with the second non-planar channel and forms a second electrode. A separator layers separates the current collectors.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 25, 2017
    Inventors: Eric DUOSS, Juergen BIENER, Patrick CAMPBELL, Julie A. JACKSON, Geoffrey M. OXBERRY, Christopher SPADACCINI, Michael STADERMANN, Cheng ZHU, Bradley TREMBACKI, Jayathi MURTHY, Matthew MERRILL
  • Patent number: 9601226
    Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 21, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Publication number: 20170054137
    Abstract: Provided here is a method for making a graphene-supported metal oxide monolith, comprising: providing a graphene aerogel monolith; immersing said graphene aerogel monolith in a solution comprising at least one metal salt to form a mixture; curing said mixture to obtain a gel; optionally, heating said gel to obtain a graphene-supported metal oxide monolith.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 23, 2017
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Publication number: 20170040123
    Abstract: Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 9, 2017
    Inventors: Patrick Campbell, Elizabeth Montalvo, Theodore F. Baumann, Juergen Biener, Matthew Merrill, Eric W. Reed, Marcus A. Worsley
  • Publication number: 20170036194
    Abstract: In one embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles. In another embodiment, a system includes a nanoporous gold structure comprising a plurality of ligaments, and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 9543569
    Abstract: A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 10, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika A. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Patent number: 9522387
    Abstract: In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: December 20, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Publication number: 20160351285
    Abstract: Disclosed here is a composition comprising at least one high-density carbon-nanotube-based monolith, said monolith comprising carbon nanotubes crosslinked by nanoparticles and having a density of at least 0.2 g/cm3. Also provided is a method for making the composition comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension is a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce the composition comprising a high-density carbon-nanotube-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Application
    Filed: July 22, 2016
    Publication date: December 1, 2016
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Patent number: 9481930
    Abstract: A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: November 1, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Alex V. Hamza, Juergen Biener, Christoph Wild, Eckhard Woerner
  • Publication number: 20150175425
    Abstract: Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.
    Type: Application
    Filed: January 27, 2015
    Publication date: June 25, 2015
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Pauzauskie, Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, JR., Juergen Biener
  • Patent number: 8993113
    Abstract: Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: March 31, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Pauzauskie, Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Juergen Biener
  • Patent number: 8785346
    Abstract: A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 22, 2014
    Assignees: Lawrence Livermore National Security, LLC, Universitaet Bremen
    Inventors: Juergen Biener, Alex V. Hamza, Marcus Baeumer, Christian Schulz, Birte Jürgens, Monika M. Biener
  • Publication number: 20140178289
    Abstract: A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Supakit Charnvanichborikarn, Sergei Kucheyev, Elizabeth Montalvo, Swanee Shin, Elijah Tylski
  • Patent number: 8703523
    Abstract: In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: April 22, 2014
    Assignees: Lawrence Livermore National Security, LLC., Karlsruher Institut fur Technologie (KIT)
    Inventors: Juergen Biener, Theodore F. Baumann, Subho Dasgupta, Horst Hahn
  • Publication number: 20130337995
    Abstract: In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 8231770
    Abstract: An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 31, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Theodore F. Baumann, Lihua Shao, Joerg Weissmueller
  • Publication number: 20120034442
    Abstract: Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 9, 2012
    Inventors: Peter J. PAUZAUSKIE, Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, JR., Juergen Biener
  • Publication number: 20100230298
    Abstract: An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 16, 2010
    Inventors: Juergen Biener, Theodore F. Baumann, Lihua Shao, Joerg Weissmueller
  • Publication number: 20090291848
    Abstract: The invention relates to a gold-containing catalyst with porous structure that is obtainable through a process that comprises the following steps: melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum, and at least partial removal by dissolving the at least one less noble metal out of the starting alloy thus obtained. The catalyst has high activity and great long-term stability, despite the fact that it does not contain a support material or a compound that serves as a support material. The catalyst can be used to accelerate and/or to influence the product selectivity of oxidation and reduction reactions. The catalyst is suitable, for example, for the oxidization of carbon monoxide to carbon dioxide, which makes it usable, among other things, in a fuel cell, in particular a polymer electrolyte membrane fuel cell (PEM), for protection of the anode catalyst against blocking by carbon monoxide.
    Type: Application
    Filed: June 8, 2009
    Publication date: November 26, 2009
    Inventors: Juergen Biener, Alex V. Hamza, Marcus Baeumer, Christian Schulz, Birte Jürgens, Monika M. Biener
  • Publication number: 20090101241
    Abstract: A method of controlling macroscopic strain of a porous structure includes contacting a porous structure with a modifying agent which chemically adsorbs to a surface of the porous structure and modifies an existing surface stress of the porous structure. A device in one embodiment includes a porous metal structure, which when contacted with a modifying agent which chemically adsorbs to a surface of the porous metal structure, exhibits a volumetric change due to modification of an existing surface stress of the porous metal structure; and a mechanism for detecting the volumetric change. Additional methods and systems are also presented.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 23, 2009
    Inventors: Juergen Biener, Monika M. Biener, Alex V. Hamza, Marcus Baeumer, Arne Wittstock, Joerg Weissmueller, Dominik Kramer, Raghavan Nadar Viswanath