Patents by Inventor Juergen Hermanns

Juergen Hermanns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130217067
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 22, 2013
    Applicant: GlycoFi, Inc.
    Inventors: TILLMAN U. GERNGROSS, Stefan Wildt, Byung-kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Patent number: 8465586
    Abstract: The present invention relates to polysaccharide derivatives having an adjusted particle morphology for use in the preparation of a hydraulic setting composition having an adjusted lump rating. The invention further relates to a method of adjusting the lump rating of a hydraulic setting composition comprising adjusting the particle morphology of a particulate polysaccharide derivative. Furthermore, the invention is directed to a hydraulic setting composition comprising a particulate polysaccharide derivative having an adjusted particle morphology. The invention is also directed to various uses of the particulate polysaccharide derivative having an adjusted particle morphology.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 18, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Robert Baumann, Yvonne Goerlach-Doht, Marco Grosstueck, Juergen Hermanns, Joerg Neubauer
  • Patent number: 8445227
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 21, 2013
    Assignee: Merck Sharp & Dohme
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20130112787
    Abstract: In a process for producing a particulate polysaccharide derivative by dry-grinding a moist polysaccharide derivative, one or more of the properties selected from median diameter, median length, bulk density and dissolution rate is controlled by controlling the temperature of the polysaccharide derivative prior to thy-grinding. Advantageously one or more of the properties selected from median diameter, median length, bulk density and dissolution rate of the particles after thy-grinding is adjusted to a first value by a first temperature of the polysaccharide derivative prior to thy-grinding and is adjusted to a second value by a second temperature.
    Type: Application
    Filed: July 28, 2010
    Publication date: May 9, 2013
    Inventors: Peter E. Pierini, Yvonne M. Goerlach-Doht, Juergen Hermanns
  • Publication number: 20120187225
    Abstract: In a process for producing a particulate polysaccharide derivative by dry-grinding a moist polysaccharide derivative the median length of the particles after dry-grinding is controlled by controlling the moisture content of the polysaccharide derivative prior to dry-grinding. Advantageously the median length of the particles after dry-grinding is adjusted to a first value by a first moisture content of the polysaccharide derivative prior to dry-grinding and is adjusted to a second value by a second moisture content.
    Type: Application
    Filed: August 31, 2010
    Publication date: July 26, 2012
    Applicant: Dow Global Technologies Inc.
    Inventors: Yvonne M. Goerlach-Doht, Juergen Hermanns
  • Publication number: 20120052530
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 1, 2012
    Applicant: GlycoFi, Inc.
    Inventors: TILLMAN U. GERNGROSS, Stefan Wildt, Byung-kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Publication number: 20120024199
    Abstract: The present invention relates to polysaccharide derivatives having an adjusted particle morphology for use in the preparation of a hydrolytically setting composition having an adjusted lump rating. The invention further relates to a method of adjusting the lump rating of a hydrolytically setting composition comprising adjusting the particle morphology of a particulate polysaccharide derivative. Furthermore, the invention is directed to a hydrolytically setting composition comprising a particulate polysaccharide derivative having an adjusted particle morphology. The invention is also directed to various uses of the particulate polysaccharide derivative having an adjusted particle morphology.
    Type: Application
    Filed: July 19, 2011
    Publication date: February 2, 2012
    Inventors: Jörg Neubauer, Yvonne Görlach-Doht, Marco Großstück, Jürgen Hermanns, Robert BAUMANN
  • Publication number: 20120029091
    Abstract: A method of controlling or adjusting release of an active ingredient from a dosage form comprising the active ingredient and a polysaccharide derivative has been found. The method comprises the steps of a) providing a composition comprising a polysaccharide derivative and a controlled amount of a liquid diluent, based on the dry weight of the polysaccharide derivative, b) subjecting the composition to a dry-grinding operation to provide a dry-ground polysaccharide derivative, and c) incorporating the dry-ground polysaccharide derivative and an active ingredient into a dosage form.
    Type: Application
    Filed: June 9, 2011
    Publication date: February 2, 2012
    Inventors: Yvonne M. Goerlach-Doht, Juergen Hermanns, Nicholas S. Grasman
  • Patent number: 8067551
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 29, 2011
    Assignee: Glycofi, Inc.
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R Hamilton, Robert C. Davidson
  • Patent number: 7935513
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 3, 2011
    Assignee: Glycofi, Inc.
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Publication number: 20110053214
    Abstract: The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal ?-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
    Type: Application
    Filed: July 21, 2010
    Publication date: March 3, 2011
    Applicant: GLYCOFI, INC.
    Inventors: Robert Collier Davidson, Tillman Ulf Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen Robin Hamilton
  • Publication number: 20110007148
    Abstract: The invention relates to a novel inspection device for bottles or similar containers (2), comprising a transport section (4) the containers (2) and comprising a camera system (9) for creating images of at least one region of the containers (2) being moved past the camera system (9).
    Type: Application
    Filed: March 18, 2009
    Publication date: January 13, 2011
    Inventors: Jürgen Hermann, Horst Böcker
  • Patent number: 7795002
    Abstract: The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal ?-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 14, 2010
    Assignee: Glycofi, Inc.
    Inventors: Robert Davidson, Tillman Ulf Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen Robin Hamilton
  • Publication number: 20100016561
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Application
    Filed: August 13, 2009
    Publication date: January 21, 2010
    Applicant: GlycoFi, Inc.
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20090226959
    Abstract: The present invention relates to eukaryotic host cells, especially lower eukaryotic host cells, having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII, GnTIV, GnTV, GnT VI or GnTIX activity, which produce bisected and/or multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins.
    Type: Application
    Filed: November 21, 2008
    Publication date: September 10, 2009
    Inventors: Piotr Bobrowicz, Stephen R. Hamilton, Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Robert C. Davidson
  • Publication number: 20090209024
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: June 5, 2008
    Publication date: August 20, 2009
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Publication number: 20090155847
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: November 7, 2008
    Publication date: June 18, 2009
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Patent number: 7449308
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: November 11, 2008
    Assignee: GlycoFi, Inc.
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson
  • Patent number: 6698253
    Abstract: A method of and an arrangement for designing tubular round knitted products on a flat knitting machine operates with the fine automation degree and a plurality of representing, designing and correcting possibilities.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 2, 2004
    Assignee: H. Stoll GmbH & Co.
    Inventors: Thomas Stoll, Juergen Hermann, Horst Fries, Hermann Weiss, Michael Haug, Gerhard Ertl
  • Publication number: 20040018590
    Abstract: The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g.
    Type: Application
    Filed: February 20, 2003
    Publication date: January 29, 2004
    Inventors: Tillman U. Gerngross, Stefan Wildt, Byung-Kwon Choi, Juergen Hermann Nett, Piotr Bobrowicz, Stephen R. Hamilton, Robert C. Davidson