Patents by Inventor Juergen Weese

Juergen Weese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10679350
    Abstract: There is provided a method and apparatus for adjusting a model of an anatomical structure in a sequence of images of the anatomical structure. The model is placed with respect to the anatomical structure in the sequence of images. A user input is received to adjust the model in a selected image of the sequence, and based on the user input, a part of the model that lies in the selected image and a previously unadjusted part of the model that lies in one or more other images of the sequence is adjusted, whilst fixing in place a previously adjusted part of the model that lies in other images of the sequence.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: June 9, 2020
    Assignee: KONINKLIJKE PHILIPS N.V
    Inventors: Alexandra Groth, Rolf Jürgen Weese, Heike Carolus, Jochen Peters
  • Patent number: 10675483
    Abstract: A radiation planning system includes a predictor-corrector optimizer unit which computes a predicted dose based on a collection of control points with a current approximate dose, each control point with a corresponding set of leaf positions, and determines an additional control point with a corresponding set of leaf positions based on a difference of the predicted fluence and the current approximate fluence through a least cost or shortest path in a layered graph structure of realizable leaf positions. Tools are described to help a planner to evaluate the effect of parameter changes to the current plan based on an identified zone of influence. The planner interactively views the current plan based on a visualization of the plan objectives and correlations between the objectives.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: June 9, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Torbjoern Vik, Harald Sepp Heese, Daniel Bystrov, Juergen Weese, Christoph Neukirchen, Alfonso Agatino Isola, Matthieu Frederic Bal
  • Patent number: 10667786
    Abstract: An ultrasound imaging apparatus (10) for segmenting an anatomical object in a field of view (29) of an ultrasound acquisition unit (14) is disclosed. The ultrasound imaging apparatus comprises a data interface (32) configured to receive a two-dimensional ultrasound data (30) of the object in the field of view in an image plane from the ultrasound acquisition unit and to receive a three-dimensional segmentation model (46) as a three-dimensional representation of the object from a segmentation unit (36). An image processor (34) is configured to determine a two-dimensional segmentation model (50) on the basis of the three-dimensional segmentation model and a segmentation plane (48), wherein the segmentation plane and an image plane of the two-dimensional ultrasound data correspond to each other.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: June 2, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jochen Peters, Amir Mohammad Tahmasebi Maraghoosh, Juergen Weese, Christian Buerger
  • Publication number: 20200051247
    Abstract: There is provided a method and apparatus for adjusting a model of an anatomical structure in a sequence of images of the anatomical structure. The model is placed with respect to the anatomical structure in the sequence of images. A user input is received to adjust the model in a selected image of the sequence, and based on the user input, a part of the model that lies in the selected image and a previously unadjusted part of the model that lies in one or more other images of the sequence is adjusted, whilst fixing in place a previously adjusted part of the model that lies in other images of the sequence.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Alexandra Groth, Rolf Jürgen Weese, Heike Carolus, Jochen Peters
  • Publication number: 20200043129
    Abstract: An apparatus includes an imaging probe and is configured for dynamically arranging presentation of visual feedback for guiding manual adjustment, via the probe, of a location, and orientation, associated with the probe. The arranging is selectively based on comparisons between fields of view of the probe and respective results of segmenting image data acquired via the probe. In an embodiment, the feedback does not include a grayscale depiction of the image data. Coordinate system transformations corresponding to respective comparisons may be computed. The selecting may be based upon and dynamically responsive to content of imaging being dynamically acquired via the probe.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 6, 2020
    Inventors: EMIL GEORGE RADULESCU, IVAN SALGO, SHENG-WEN HUANG, RAMON QUIDO ERKAMP, SHOUGANG WANG, IRINA WAECHTER-STEHLE, CHRISTIAN BUERGER, SABINE MOLLUS, JUERGEN WEESE
  • Publication number: 20200005464
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Application
    Filed: March 2, 2018
    Publication date: January 2, 2020
    Inventors: Rolf Jürgen WEESE, Alexandra GROTH, Jochen PETERS
  • Publication number: 20190388709
    Abstract: The invention relates to a dynamic sliding-window-like initialization for, for example, iterative VMAT algorithms. Specifically, a dynamic sliding window conversion method is contemplated where typical dynamic VMAT constraints are taken into account to find an optimal set of suitable openings (i.e. binary masks) that can be used as quasi-feasible start initialization for any VMAT algorithm that can refine until a deliverable plan is reached. Here, a multileaf leaf tip trajectory least square constrained optimization is performed to find a set of optimal unidirectional trajectories for all MLC leaf pairs of all arc points. To ensure that a quasi-feasible (or better quasi-deliverable) solution is returned, for example, a maximum dose rate, a maximum gantry speed, a maximum leafs speed, and a maximum treatment time may be enforced.
    Type: Application
    Filed: January 24, 2018
    Publication date: December 26, 2019
    Inventors: Alfonso Agatino ISOLA, Christoph NEUKIRCHEN, Torbjoern VIK, Harald Sepp HEESE, Rolf Juergen WEESE
  • Patent number: 10497127
    Abstract: A system and method are provided for segmentation of an anatomical structure in which a user may interactively specify a limited set of boundary points of the anatomical structure in a view of a medical image. The set of boundary points may, on its own, be considered an insufficient segmentation of the anatomical structure in the medical image, but is rather used to select a segmentation model from a plurality of different segmentation models. The selection is based on a goodness-of-fit measure between the boundary points and each of the segmentation models. For example, a best-fitting model may be selected and used for segmentation of the anatomical structure. It is therefore not needed for the user to delineate the entire anatomical structure, which would be time consuming and ultimately error prone, nor is it needed for a segmentation algorithm to autonomously have to select a segmentation model, which may yield an erroneous selection.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: December 3, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Matthew John Lawrenson, Julian Charles Nolan, Juergen Weese
  • Patent number: 10426414
    Abstract: The present invention relates to a system for tracking the position of an ultrasonic probe in a body part. It is described to acquire (110) an X-ray image of a portion of a body part within which an ultrasonic probe (20) is positioned. First geometrical positional information of the ultrasonic probe in the portion of the body part is determined (120), utilizing the X-ray image. At least one ultrasonic image comprising a part of a body feature with the ultrasonic probe is acquired (130), the acquiring (130) comprising acquiring (140) an ultrasonic image of the at least one ultrasonic image at a later time than a time of acquisition of the X-ray image. Second geometrical positional information of the ultrasonic probe in the body part at the later time is determined (150), comprising utilizing the first geometrical positional information and the at least one ultrasonic image comprising the part of the body feature.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: October 1, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Frank Michael Weber, Niels Nijhof, Juergen Weese
  • Patent number: 10426430
    Abstract: An ultrasound system for planning a surgical implantation of a prosthetic aortic valve produces three dimensional images of the aortic root region of a patient. An electronic model of an aortic root is accessed and fitted to the aortic root in a three dimensional ultrasound image. Preferably the aortic root model exhibits closed contour cross-sections which are fitted to the endothelial lining of the aortic root in the ultrasound image. A medial axis of the fitted model is identified and radii measured from the medical axis to the border of the fitted model. The radii are joined to identify a surface forming a mesh model fitted to the aortic root anatomy of the patient. The shape and dimensions of the fitted model may be used to fabricate a custom prosthetic valve for aortic valve replacement.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 1, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Lyubomir Georgiev Zagorchev, Michael Cardinale, Scott Holland Settlemier, Kevin CamHong Quan, Sabine Mollus, Juergen Weese, Ivan Salgo
  • Patent number: 10424044
    Abstract: An apparatus includes an imaging probe and is configured for dynamically arranging presentation of visual feedback (144) for guiding manual adjustment, via the probe, of a location, and orientation, associated with the probe. The arranging is selectively based on comparisons (321) between fields of view of the probe and respective results of segmenting image data acquired via the probe. In an embodiment, the feedback does not include (175) a grayscale depiction of the image data. Coordinate system trans formations corresponding to respective comparisons may be computed. The selecting may be based upon and dynamically responsive to content of imaging being dynamically acquired via the probe.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: September 24, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Emil George Radulescu, Ivan Salgo, Sheng-Wen Huang, Ramon Quido Erkamp, Shougang Wang, Irina Waechter-Stehle, Christian Buerger, Sabine Mollus, Juergen Weese
  • Publication number: 20190287253
    Abstract: There is provided a method and apparatus for segmenting two-dimensional images of an anatomical structure. A time sequence of two-dimensional images of the anatomical structure is acquired (202) and a segmentation model for the anatomical structure is acquired (204). The segmentation model comprises a plurality of segments. The acquired segmentation model is applied to the entire time sequence of two-dimensional images of the anatomical structure simultaneously in time and space to segment the time sequence of two-dimensional images by way of the plurality of segments (206).
    Type: Application
    Filed: December 8, 2017
    Publication date: September 19, 2019
    Inventors: Rolf Jürgen Weese, Alexandra GROTH, Jochen Peters
  • Patent number: 10417765
    Abstract: The present invention relates to a system (1) for adaptive segmentation. The system (1) comprises a configurator (10), which is configured to determine an adapted angular range (AR) with respect to an operation mode of the system (1) and which is configured to determine a segmentation parameter (SP) based on the adapted angular range (AR). Further, the system comprises an imaging sensor (20), which is configured to acquire images (I1, . . . , IN) within the adapted angular range (AR). Still further, the system comprises a segmentator (30), which is configured to generate a segmentation model based on the acquired images (I1, . . . , IN) using the determined segmentation parameter (SP).
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: September 17, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Axel Saalbach, Pieter Gerben Eshuis, Wilhelmus Henrica Gerarda Maria Van Den Boomen, Dirk Schäfer, Juergen Weese
  • Publication number: 20190267142
    Abstract: The present invention relates to a system, a corresponding method and computer program for assessing outflow tract obstruction of a heart of a subject, the system comprising a unit (10) for providing a geometrical model of the heart, a unit (20) for providing a volumetric image of the heart, a unit (30) for adapting the geometrical model to the volumetric image to obtain an adapted model (32), a unit (40) for providing an implant model (44) of an implant and for constructing the implant model (44) into the adapted model (32) to obtain an enhanced model (42), a unit (60) for determining a trajectory curve (62) through an outflow tract (52), and a unit (50) for assessing outflow tract obstruction based on the adapted model (32), the enhanced model (42) and the trajectory curve (62). The invention allows for an improved assessing of an outflow tract obstruction of a heart of a subject.
    Type: Application
    Filed: September 15, 2017
    Publication date: August 29, 2019
    Inventors: Tilman WEKEL, Thomas Heiko STEHLE, Rolf Jürgen WEESE
  • Publication number: 20190251692
    Abstract: There is provided a method and apparatus for segmenting a two-dimensional image of an anatomical structure. A three-dimensional model of the anatomical structure is acquired (202). The three-dimensional model comprises a plurality of segments. The acquired three-dimensional model is adapted to align the acquired three-dimensional model with the two-dimensional image (204). The two-dimensional image is segmented by the plurality of segments of the adapted three-dimensional model.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 15, 2019
    Inventors: Alexander SCHMIDT-RICHBERG, Irina WAECHTER-STEHLE, Martin BERGTHOLDT, Jochen PETERS, Rolf Jürgen WEESE
  • Patent number: 10368763
    Abstract: An apparatus, a method and a computer program for visualizing a conduction tract of a heart include adapting a generic heart model to match geometrical data of a patient's heart, where model data, corresponding to the generic heart model and indicating a shape and/or position of the conduction tract, is modified in accordance to the adaptation of the generic heart model. The modification of the model data is further refined based on electrophysiological data of the patient to produce refined model data, and the refined model data is used for generating a visualization of a refined model heart indicating a refined shape and/or refined position of the conduction tract of the patients heart.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: August 6, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexandra Groth, Juergen Weese, Helko Lehmann, Hans Barschdorf
  • Patent number: 10354389
    Abstract: A system and a method are provided for analyzing an image of an aortic valve structure to enable assessment of aortic valve calcifications. The system comprises an image interface for obtaining an image of an aortic valve structure, the aortic valve structure comprising aortic valve leaflets and an aortic bulbus. The system further comprises a segmentation subsystem for segmenting the aortic valve structure in the image to obtain a segmentation of the aortic valve structure. The system further comprises an identification subsystem for identifying a calcification on the aortic valve leaflets by analyzing the image of the aortic valve structure.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 16, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Juergen Weese, Alexandra Groth, Jochen Peters, Irina Wachter-Stehle, Sabine Mollus
  • Publication number: 20190143147
    Abstract: The invention relates to a system and a method for evaluating a treatment plan for an external radiation therapy treatment, the treatment plan comprising parameters for controlling an external radiation therapy apparatus during the treatment. The system comprises a database storing historic treatment plans and storing for each historic treatment plan a quality parameter indicative of whether a deviation between a planned dose distribution and a measured dose distribution resulting from an execution of the treatment plan is within an acceptable limit. An evaluation unit determines a threshold value for each of a plurality of treatment plan metrics based on the historic treatment plans and the associated quality parameters. Further, the evaluation unit calculates a value of each of the metrics for the treatment plan and compares the value of each of the metrics with the threshold value determined for the respective metric.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 16, 2019
    Inventors: Alfonso Agatino ISOLA, Rolf Jürgen WEESE, Christoph NEUKIRCHEN, Steffen RENISCH, Hrishikesh Narayanrao DESHPANDE, Heinrich SCHULZ, Sven KABUS, Stéphane ALLAIRE, Maria Luiza BONDAR
  • Publication number: 20190142392
    Abstract: The present invention relates to the field of medical ultrasound imaging, and in particular to a medical ultrasound image processing device for supporting reproducible acquisition of 2D ultrasound images.
    Type: Application
    Filed: June 6, 2017
    Publication date: May 16, 2019
    Inventors: Heike Carolus, Julien Senegas, Juergen Weese
  • Publication number: 20190139647
    Abstract: A system and method are provided for use in evaluating a clinical guideline which is represented in a machine readable version by a decision tree comprising at least one node and a decision rule associated with the node. The decision rule comprises at least one variable representing a biomedical quantity. The biomedical quantity is extracted from the patient data using an ontology which defines concepts and their relationships in a medical domain of the clinical guideline and which thereby relates the variable of the decision rule to the patient data. If said extraction is not possible, a view of the patient data is presented to the user to enable the user to determine the biomedical quantity from the view. Advantageously, the user is assisted in evaluating the clinical guideline even when it is not possible to automatically extract the biomedical quantity from the patient data.
    Type: Application
    Filed: June 27, 2017
    Publication date: May 9, 2019
    Inventors: TILMAN WEKEL, ALEXANDRA GROTH, ROLF Jürgen WEESE