Patents by Inventor Juergen Weese

Juergen Weese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9953429
    Abstract: A system and method is provided which obtains different medical images (210) showing an anatomical structure of a patient and having been acquired by different medical imaging modalities and/or different medical imaging protocols. The system is configured for fitting a first deformable model to the anatomical structure in the first medical image (220A), fitting a second deformable model to the anatomical structure in the second medical image (220B), mutually aligning the first fitted model and the second fitted model (230), and subsequently fusing the first fitted model and the second fitted model to obtain a fused model (240) by augmenting the first fitted model with a part of the second fitted model which is missing in the first fitted model; or adjusting or replacing a part of the first fitted model based on a corresponding part of the second fitted model having obtained a better fit.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 24, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Sabine Mollus, Axel Saalbach, Juergen Weese
  • Publication number: 20180092521
    Abstract: A medical system for illuminating a structure of interest inside a human or animal body, the medical system comprising: i) a medical device comprising a controllable light source according to any of the preceding claims, characterized in that said medical system comprises: ii) a control unit for generating a control signal for controlling the controllable light source, wherein the control unit comprises, iii) a receiving unit configured to receive data of the human or animal body, iv) a further receiving unit (266, 366) configured to receive stored information from a memory (261, 361), said memory configured for storing information as to i) a depth of a structure of interest (220, 320) within a tissue and/or a cavity of the human or animal body, and ii) the wavelength, or range of wavelengths suitable for illuminating the structure of interest (220, 320) based on the depth of said structure of interest (220, 320) within the tissue and/or the cavity, whereby the control unit is arranged to generate, based on t
    Type: Application
    Filed: March 24, 2016
    Publication date: April 5, 2018
    Inventors: JULIAN CHARLES NOLAN, MATTHEW JOHN LAWRENSON, JUERGEN WEESE
  • Publication number: 20180078786
    Abstract: A radiation planning system includes a predictor-corrector optimizer unit which computes a predicted dose based on a collection of control points with a current approximate dose, each control point with a corresponding set of leaf positions, and determines an additional control point with a corresponding set of leaf positions based on a difference of the predicted fluence and the current approximate fluence through a least cost or shortest path in a layered graph structure of realizable leaf positions. Tools are described to help a planner to evaluate the effect of parameter changes to the current plan based on an identified zone of influence. The planner interactively views the current plan based on a visualization of the plan objectives and correlations between the objectives.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 22, 2018
    Inventors: TORBJOERN VIK, HARALD SEPP HEESE, DANIEL BYSTROV, JUERGEN WEESE, CHRISTOPH NEUKIRCHEN, ALFONSO AGATINO ISOLA, MATTHIEU FREDERIC BAL
  • Publication number: 20180012402
    Abstract: A system and method is provided for generating a finite element (FE) model of an anatomical structure based on a fitted model (340) of the anatomical structure and association data. A segmentation model (310) may be provided for segmenting the anatomical structure. Association data may be obtained which associates a segmentation model part (315) of the segmentation model (310) with a mesh property, the segmentation model part (315) representing a pre-determined anatomical region of interest. The segmentation model may be applied to a medical image (320) of a subject, thereby obtaining a fitted model (340) providing a segmentation of the anatomical structure (330). The finite element model (350) may then be generated based on the fitted model (340) and the association data, said generating comprising meshing a finite element model part of the finite element model in accordance with the mesh property, the finite element model part corresponding with the pre-determined anatomical region of interest.
    Type: Application
    Filed: January 26, 2016
    Publication date: January 11, 2018
    Applicant: Koninklijke Philips N.V.
    Inventors: Julian Charles Nolan, Matthew John Lawrenson, Juergen Weese
  • Publication number: 20170365059
    Abstract: The present invention relates to a system (1) for adaptive segmentation. The system (1) comprises a configurator (10), which is configured to determine an adapted angular range (AR) with respect to an operation mode of the system (1) and which is configured to determine a segmentation parameter (SP) based on the adapted angular range (AR). Further, the system comprises an imaging sensor (20), which is configured to acquire images (I1, . . . , IN) within the adapted angular range (AR). Still further, the system comprises a segmentator (30), which is configured to generate a segmentation model based on the acquired images (I1, . . . , IN) using the determined segmentation parameter (SP).
    Type: Application
    Filed: January 6, 2016
    Publication date: December 21, 2017
    Inventors: AXEL SAALBACH, PIETER GERBEN ESHUIS, WILHELMUS HENRICA GERARDA MARIA VAN DEN BOOMEN, DIRK SCHÄFER, JUERGEN WEESE
  • Publication number: 20170360396
    Abstract: An ultrasound imaging apparatus (10) for segmenting an anatomical object in a field of view (29) of an ultrasound acquisition unit (14) is disclosed. The ultrasound imaging apparatus comprises a data interface (32) configured to receive a two-dimensional ultrasound data (30) of the object in the field of view in an image plane from the ultrasound acquisition unit and to receive a three-dimensional segmentation model (46) as a three-dimensional representation of the object from a segmentation unit (36). An image processor (34) is configured to determine a two-dimensional segmentation model (50) on the basis of the three-dimensional segmentation model and a segmentation plane (48), wherein the segmentation plane and an image plane of the two-dimensional ultrasound data correspond to each other.
    Type: Application
    Filed: January 4, 2016
    Publication date: December 21, 2017
    Inventors: JOCHEN PETERS, AMIR MOHAMMAD TAHMASEBI MARAGHOOSH, JUERGEN WEESE, CHRISTIAN BUERGER
  • Publication number: 20170337328
    Abstract: A method includes visually displaying an electronically formatted medical report, wherein the electronically formatted medical report references a set of electronically formatted images, acquiring the set of electronically formatted images, and linking the electronically formatted medical report and the set of electronically formatted images. A computing apparatus (102), includes a memory (108) with at least one computer readable instruction (106) and a processor (104) that executes the at least one computer readable instruction. The processor, in response to executing the at least one computer readable instruction, visually displays an electronically formatted medical report, wherein the electronically formatted medical report references a set of electronically formatted images, acquires the set of electronically formatted images, and links the electronically formatted medical report and the set of electronically formatted images.
    Type: Application
    Filed: November 2, 2015
    Publication date: November 23, 2017
    Inventors: HEIKE RUPPERTSHOFEN, Thusitha Danajaya De Silva MABOTUWANA, Yuechen Qian, Juergen Weese
  • Publication number: 20170330328
    Abstract: A system for establishing a contour of a structure is disclosed. An initialization subsystem (1) is used for initializing an adaptive mesh representing an approximate contour of the structure, the structure being represented at least partly by a first image, and the structure being represented at least partly by a second image. A deforming subsystem (2) is used for deforming the adaptive mesh, based on feature information of the first image and feature information of the second image. The deforming subsystem comprises a force-establishing subsystem (3) for establishing a force acting on at least part of the adaptive mesh, in dependence on the feature information of the first image and the feature information of the second image. A transform-establishing subsystem (4) is used for establishing a coordinate transform reflecting a registration mismatch between the first image, the second image, and the adaptive mesh.
    Type: Application
    Filed: August 9, 2017
    Publication date: November 16, 2017
    Inventors: Jochen Peters, OLIVIER ECABERT, CARSTEN MEYER, REINHARD KNESER, JUERGEN WEESE
  • Publication number: 20170301096
    Abstract: A system and a method are provided for analyzing an image of an aortic valve structure to enable assessment of aortic valve calcifications. The system comprises an image interface for obtaining an image of an aortic valve structure, the aortic valve structure comprising aortic valve leaflets and an aortic bulbus. The system further comprises a segmentation subsystem for segmenting the aortic valve structure in the image to obtain a segmentation of the aortic valve structure. The system further comprises an identification subsystem for identifying a calcification on the aortic valve leaflets by analyzing the image of the aortic valve structure.
    Type: Application
    Filed: September 11, 2015
    Publication date: October 19, 2017
    Inventors: JUERGEN WEESE, ALEXANDRA GROTH, JOCHEN PETERS, IRINA WACHTER-STEHLE, SABINE MOLLUS
  • Patent number: 9773347
    Abstract: A system (20) for interacting with a three-dimensional object dataset comprises a signal input (21) for receiving a signal from an interaction device (34) comprising a touch sensitive surface (35) having a typical shape of at least part of an object represented by the three-dimensional object dataset, wherein the signal is indicative of a location on the touch sensitive surface (35) that is touched. The system further comprises a mapping unit (22) for mapping the touched location to a corresponding point of the object represented by the three-dimensional object dataset. The three-dimensional object dataset is based on a signal obtained from a scanner (24) arranged for scanning the object.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: September 26, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Alexandra Groth, Helko Lehmann, Juergen Weese
  • Publication number: 20170251988
    Abstract: An ultrasound imaging apparatus (10) for providing ultrasound images of a patient (12) is disclosed. The imaging apparatus (10) comprises an ultrasound acquisition unit (14) for acquiring ultrasound data (42) of a patient's body in a field of view (16), a position determining unit (24) for determining a position (26) within the patient's body. An ultrasound data transformation unit (30) is provided for transforming the ultrasound data in the filed of view on the basis of the determined position to transformed ultrasound data (42) in a virtual field of view (20) having a virtual viewing direction (28) different from the viewing direction of the ultrasound acquisition unit.
    Type: Application
    Filed: September 11, 2015
    Publication date: September 7, 2017
    Inventors: FRANK MICHAEL WEBER, THOMAS HEIKO STEHLE, IRINA WAECHTER-STEHLE, JUERGEN WEESE
  • Publication number: 20170213338
    Abstract: A system (100) is provided for performing a model-based segmentation of an anatomical structure in a medical image. The system comprises a processor (140) configured for performing a model-based segmentation of the anatomical structure by applying a deformable model to image data (042). Moreover, definition data (220) is provided which defines a geometric relation between a first part and a second part of the deformable model of which a corresponding first part of the anatomical structure is presumed to be better visible in the image data than a corresponding second part of the anatomical structure. The definition data is then used to adjust a fit of the second part of the deformable model. As a result, a better fit of the second part of the deformable model to the second part of the anatomical structure is obtained despite said part being relatively poorly visible in the image data.
    Type: Application
    Filed: November 26, 2014
    Publication date: July 27, 2017
    Inventors: ALEXANDRA GROTH, JOCHEN PETERS, JUERGEN WEESE, AXEL SAALBACH
  • Patent number: 9684972
    Abstract: An imaging apparatus for imaging an object includes a geometric relation determination unit configured to determine a geometric relation between first and second images of the object. A marker determination unit configured to determine corresponding marker locations in the first and second images and marker appearances based on the geometric relation such that the marker appearances of a first marker to be located at a first location in the first image and of a second marker to be located at a second corresponding location in the second image are indicative of the geometric relation. The images with the markers at the respective corresponding locations are shown on a display unit. Since the marker appearances are indicative of the geometric relation between the images, a comparative reviewing of the images can be facilitated, in particular, if they correspond to different viewing geometries.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 20, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Juergen Weese, Irina Wächter-Stehle, Thomas Heiko Stehle, Alex Saalbach, Sabine Mollus, Nicole Schadewaldt, Lyubomir Georgiev Zagorchev
  • Publication number: 20170098302
    Abstract: A system (100) and method are provided for determining an effective cross-sectional area of a tubular cardiovascular structure (400), which may be used in the assessment of blood flow through the tubular cardiovascular structure. Said determining comprises obtaining a three-dimensional Image'of the tubular cardiovascular structure, segmenting the image to obtain a segmentation of the lumen inside the tubular cardiovascular structure, and determining a centerline (430) of the tubular cardiovascular structure. Then, using the segmentation of the lumen, an apparent flow aperture of the tubular cardiovascular structure is determined in the direction of the centerline, e.g., by projecting the segmentation along the direction of the centerline and determining the area in the projection which is free of projected parts.
    Type: Application
    Filed: May 21, 2015
    Publication date: April 6, 2017
    Inventors: JOCHEN PETERS, JUERGEN WEESE, IRINA WAECHTER-STEHLE
  • Publication number: 20170084023
    Abstract: An image processing apparatus (16) is disclosed for segmenting a region of interest (15) in a multi-dimensional image data of an object (12). The image processing apparatus comprises an interface for receiving an image data of the object including the region of interest to be segmented. A selection unit selects a deformable model 30 of an anatomical structure corresponding to the object in the image data. A processing unit segments the region of interest by adapting the deformable model on the basis of the image data (xt) and additional information of the object.
    Type: Application
    Filed: February 27, 2015
    Publication date: March 23, 2017
    Inventors: Irina Wächter-Stehle, Juergen Weese, Christian Buerger
  • Publication number: 20160379372
    Abstract: A method is provided for generating a deformable model (300) for segmenting an anatomical structure in a medical image. The anatomical structure comprises a wall. The deformable model (300) is generated such that it comprises, in addition to two surface meshes (320, 360), an intermediate layer mesh (340) for being applied in-between a first surface layer of the wall and a second surface layer of the wall. In generating the intermediate layer mesh (340), the mesh topology of at least part (400) of the intermediate layer mesh is matched to the mesh topology of one of the surface meshes (320, 360), thereby establishing matching mesh topologies. The deformable model (300), as generated, better matches the composition of such walls, thereby providing a more accurate segmentation.
    Type: Application
    Filed: December 2, 2014
    Publication date: December 29, 2016
    Inventors: ALEXANDRA GROTH, HANNES NICKISCH, FRANK MICHAEL WEBER, JUERGEN WEESE, HANS BARSCHDORF
  • Patent number: 9519949
    Abstract: A system (100) is provided for determining a transformation between different coordinate systems associated with different medical data. In determining the transformation, the system (100) makes use of a third set of anatomical landmarks (040) defined in a reference coordinate system to match a first set of anatomical landmarks (010) defined in a first coordinate system to a second set of anatomical landmarks (020) defined in a second coordinate system. Effectively, the third set of anatomical landmarks is used as an intermediary in obtaining the transformation between both input sets of coordinate systems. As the third set of anatomical landmarks includes the anatomical landmarks of both input sets, it is not needed for both input sets to be identical or even to overlap. Rather, even in case both input sets are entirely disjunct, i.e., not-overlapping, it is still possible to determine the transformation between the different coordinate systems.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: December 13, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Stéphane Allaire, Alexandra Groth, Juergen Weese
  • Publication number: 20160307331
    Abstract: A system and method is provided which obtains different medical images (210) showing an anatomical structure of a patient and having been acquired by different medical imaging modalities and/or different medical imaging protocols. The system is configured for fitting a first deformable model to the anatomical structure in the first medical image (220A), fitting a second deformable model to the anatomical structure in the second medical image (220B), mutually aligning the first fitted model and the second fitted model (230), and subsequently fusing the first fitted model and the second fitted model to obtain a fused model (240) by augmenting the first fitted model with a part of the second fitted model which is missing in the first fitted model; or adjusting or replacing a part of the first fitted model based on a corresponding part of the second fitted model having obtained a better fit.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 20, 2016
    Inventors: SABINE MOLLUS, AXEL SAALBACH, JUERGEN WEESE
  • Publication number: 20160306023
    Abstract: A measurement apparatus (800) to measure cortical thickness, the measurement apparatus may include at least one controller (810) which may be configured to: obtain magnetic resonance (MR) scan information of a region-of-interest of at least a portion of a cerebral cortex of a subject; form first, second and third meshes each comprising a plurality of points situated apart from each other, the first and third meshes being situated at inner and outer cortical boundary layers, respectively, of the cerebral cortex and the second mesh being situated between the first and third meshes; and/or for each of a plurality of points of the second mesh: determine a closest point of the first mesh and a closest point of the third mesh, determine a distance between the corresponding closest point of the first mesh and the corresponding closest point of the third mesh, said distance being corresponding with a cortical thickness.
    Type: Application
    Filed: November 12, 2014
    Publication date: October 20, 2016
    Inventors: LYUBOMIR GEORGIEV ZAGORCHEV, CARSTEN MEYER, ASTRID RUTH FRANZ, THOMAS HEIKO STEHLE, JUERGEN WEESE, FABIAN WENZEL, MARCEL BREEUWER, VELJKO POPOV, SEBASTIAN FLACKE
  • Publication number: 20160267626
    Abstract: A system (100) is provided for determining a transformation between different coordinate systems associated with different medical data. In determining the transformation, the system (100) makes use of a third set of anatomical landmarks (040) defined in a reference coordinate system to match a first set of anatomical landmarks (010) defined in a first coordinate system to a second set of anatomical landmarks (020) defined in a second coordinate system. Effectively, the third set of anatomical landmarks is used as an intermediary in obtaining the transformation between both input sets of coordinate systems. As the third set of anatomical landmarks includes the anatomical landmarks of both input sets, it is not needed for both input sets to be identical or even to overlap. Rather, even in case both input sets are entirely disjunct, i.e., not-overlapping, it is still possible to determine the transformation between the different coordinate systems.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Stéphane ALLAIRE, Alexandra GROTH, Juergen Weese