Patents by Inventor Juergen Zimmer

Juergen Zimmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150108972
    Abstract: Embodiments relate to a sensor device including a layer stack 600, the layer stack 600 including at least ferromagnetic and non-magnetic layers formed on a common substrate 620. The sensor device 600 further includes at least a first magneto-resistive sensor element 711 provided by a first section 611 of the layer stack 600. The first magneto-resistive sensor element 711 herein is configured to generate a first signal. The sensor device 600 also includes a second magneto-resistive sensor element 712 provided by a second section 612 of the layer stack 610. The second magneto-resistive sensor element 712 herein is configured to generate a second signal for verifying the first signal.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Infineon Technologies AG
    Inventors: Juergen Zimmer, Harald Witschnig
  • Publication number: 20150061658
    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: JUERGEN ZIMMER, KLEMENS PRUEGL
  • Patent number: 8884616
    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl
  • Publication number: 20140291788
    Abstract: A magnetoresistive device includes a substrate and an electrically insulating layer arranged over the substrate. The magnetoresistive device further includes a first free layer embedded in the electrically insulating layer and a second free layer embedded in the electrically insulating layer. The first free layer and the second free layer are separated by a portion of the electrically insulating layer.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 2, 2014
    Applicant: Infineon Technologies AG
    Inventors: Juergen Zimmer, Wolfgang Raberg, Stephan Schmitt
  • Publication number: 20140197827
    Abstract: An XMR-sensor and method for manufacturing the XMR-Sensor are provided. The XMR-sensor includes a substrate, a first contact, a second contact and an XMR-structure. The substrate includes a first main surface area and a second main surface area. The first contact is arranged at the first main surface area and the second contact is arranged at the second main surface area. The XMR-structure extends from the first contact to the second contact such that an XMR-plane of the XMR-structure is arranged along a first direction perpendicular to the first main surface area or the second main surface area.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: Infineon Technologies AG
    Inventor: Juergen Zimmer
  • Patent number: 8638090
    Abstract: A sensor system method of production includes forming first and second structures of the magnetoresistive system, heating the first and second structures, applying a magnetic field in a reference direction to the first and second structures, and cooling the first and second structures to fix a reference magnetization in the first and second structures in the reference direction. The structures are heated to near or above a blocking temperature, whereby the shape anisotropy of the first structure forces the reference magnetization to rotate into a first new orientation and the shape anisotropy of the second structure forces the reference magnetization to rotate into a second new orientation whereby the reference magnetization in the first and second structures rotate in opposite directions. The rotated reference magnetizations of the first and second structures are pinned in the respective new orientation.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Juergen Zimmer
  • Publication number: 20130328556
    Abstract: Embodiments relate to magnetoresistive sensors suitable for both angle and field strength sensing. In an embodiment, a sensor comprises two different magnetoresistive (xMR) sensor components for sensing two different aspects or characteristics of a magnetic field. In an embodiment, the first xMR sensor component is configured for magnetic field angle or rotation sensing, while the second xMR sensor component is configured for magnetic field strength sensing. In an embodiment, the second xMR sensor component is configured for magnetic field strength sensing in two dimensions. The second xMR sensor therefore can determine, in embodiment, whether the field sensed with respect to angle or rotation by the first xMR sensor component is of sufficient strength or meets a minimum magnitude threshold. If the minimum threshold is not met, an alarm or alert can be provided.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Inventors: Wolfgang Granig, Juergen Zimmer
  • Publication number: 20130241544
    Abstract: Embodiments relate to sensors, such as speed sensors and angle sensors, that use a modulated supply voltage to approximately double output signals of the sensors because the sensor element and the supply voltage exhibit the same frequency. In embodiments, the sensor element is an xMR element, and the modulated supply voltage is generated on-chip, such as by another xMR element. Direct frequency doubling of the output signal of the sensor element therefore can be obtained without additional and complex circuitry or signal processing.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Inventor: Juergen Zimmer
  • Publication number: 20130241537
    Abstract: A sensor system method of production includes forming first and second structures of the magnetoresistive system, heating the first and second structures, applying a magnetic field in a reference direction to the first and second structures, and cooling the first and second structures to fix a reference magnetization in the first and second structures in the reference direction. The structures are heated to near or above a blocking temperature, whereby the shape anisotropy of the first structure forces the reference magnetization to rotate into a first new orientation and the shape anisotropy of the second structure forces the reference magnetization to rotate into a second new orientation whereby the reference magnetization in the first and second structures rotate in opposite directions. The rotated reference magnetizations of the first and second structures are pinned in the respective new orientation.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 19, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Dirk Hammerschmidt, Juergen Zimmer
  • Publication number: 20130065075
    Abstract: Embodiments relate to magnetoresistive (MR) sensors, sensor elements and structures, and methods. In particular, embodiments relate to MR, such as giant MR (GMR) or tunneling MR (TMR), spin valve layer systems and related sensors having improved stability. Embodiments include at least one of a multi-layer pinned layer or a multi-layer reference layer, making the stack more stable and therefore suitable for use at higher temperatures and magnetic fields than conventional systems and sensors.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Inventors: Klemens Pruegl, Juergen Zimmer, Andreas Strasser, Wolfgang Raberg, Thomas Bever
  • Patent number: 8373536
    Abstract: The invention relates to a magnetoresistive device formed to sense an externally applied magnetic field, and a related method. The magnetoresistive device includes a magnetoresistive stripe formed over an underlying, metallic layer that is patterned to produce electrically isolated conductive regions over a substrate, such as a silicon substrate. An insulating layer separates the patterned metallic layer from the magnetoresistive stripe. A plurality of conductive vias is formed to couple the isolated regions of the metallic layer to the magnetoresistive stripe. The conductive vias form local short circuits between the magnetoresistive stripe and the isolated regions of the metallic layer to alter the uniformity of a current flow therein, thereby improving the position and angular sensing accuracy of the magnetoresistive device.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 12, 2013
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Thomas Bever
  • Publication number: 20120326713
    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: Juergen Zimmer, Klemens Pruegl
  • Patent number: 8269486
    Abstract: A sensor system includes a first magnetoresistive sensor resistor including a pinned magnetic layer having a fixed orientation in a reference magnetization direction. The first sensor resistor is configured such that its resistance changes in response to an angle defined between the reference magnetization direction and a magnetic field. A plurality of second magnetoresistive sensor resistors are configured to provide a differential signal. Each of the second sensor resistors includes a pinned magnetic layer having a fixed orientation in the reference magnetization direction. Another sensor system includes a first magnetoresistive sensor resistor having a length axis oriented by 90°+an angle ?, where ?<90° relative to a reference magnetization axis. A second magnetoresistive sensor resistor has a length axis oriented by 90°?? relative to the reference magnetization axis.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 18, 2012
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Juergen Zimmer
  • Publication number: 20120229133
    Abstract: The invention relates to a magnetoresistive device formed to sense an externally applied magnetic field, and a related method. The magnetoresistive device includes a magnetoresistive stripe formed over an underlying, metallic layer that is patterned to produce electrically isolated conductive regions over a substrate, such as a silicon substrate. An insulating layer separates the patterned metallic layer from the magnetoresistive stripe. A plurality of conductive vias is formed to couple the isolated regions of the metallic layer to the magnetoresistive stripe. The conductive vias form local short circuits between the magnetoresistive stripe and the isolated regions of the metallic layer to alter the uniformity of a current flow therein, thereby improving the position and angular sensing accuracy of the magnetoresistive device.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Juergen Zimmer, Thomas Bever
  • Patent number: 8258776
    Abstract: A sensing system includes a conductor with a current flow path therethrough configured such that a current flowing through the conductor establishes an inhomogeneous magnetic field. A first pair of sensors is situated a first location having a first sensitivity, a second pair of sensors is situated at a second location having a second sensitivity lower than the first sensitivity. The first and second pairs of sensors are configured to measure the inhomogeneous magnetic field at their respective locations.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 4, 2012
    Assignee: Infineon Technologies AG
    Inventors: Sebastian Koss, Juergen Zimmer
  • Patent number: 8193897
    Abstract: The invention relates to a magnetoresistive device formed to sense an externally applied magnetic field, and a related method. The magnetoresistive device includes a magnetoresistive stripe formed over an underlying, metallic layer that is patterned to produce electrically isolated conductive regions over a substrate, such as a silicon substrate. An insulating layer separates the patterned metallic layer from the magnetoresistive stripe. A plurality of conductive vias is formed to couple the isolated regions of the metallic layer to the magnetoresistive stripe. The conductive vias form local short circuits between the magnetoresistive stripe and the isolated regions of the metallic layer to alter the uniformity of a current flow therein, thereby improving the position and angular sensing accuracy of the magnetoresistive device.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 5, 2012
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Thomas Bever
  • Publication number: 20120126806
    Abstract: Embodiments relate to xMR sensors, sensor elements and structures, and methods. In an embodiment, a sensor element comprises a non-elongated xMR structure; and a plurality of contact regions formed on the xMR structure spaced apart from one another such that a non-homogeneous current direction and current density distribution are induced in the xMR structure when a voltage is applied between the plurality of contact regions.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Inventor: Juergen Zimmer
  • Publication number: 20120119735
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 17, 2012
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Patent number: 8174260
    Abstract: An integrated circuit including a first magneto-resistive sensing element, magnetic material and a spacer. The magnetic material is situated laterally to the first magneto-resistive sensing element. The spacer is situated between the first magneto-resistive sensing element and the magnetic material. The magnetic material is magnetically coupled to the first magneto-resistive sensing element.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: May 8, 2012
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Raberg, Juergen Zimmer
  • Publication number: 20120098533
    Abstract: Embodiments relate to xMR sensors, including giant magnetoresistive (GMR), tunneling magnetoresistive (TMR) or anisotropic magnetoresistive (AMR), and the configuration of xMR strips within xMR sensors. In an embodiment, an xMR strip includes a plurality of differently sized and/or differently oriented serially connected portions. In another embodiment, an xMR strip includes a varying width or other characteristic. Such configurations can address discontinuities associated with conventional xMR sensors and improve xMR sensor performance.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Inventors: Juergen Zimmer, Wolfgang Raberg