Patents by Inventor Julia KOZHUKH

Julia KOZHUKH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9539694
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of interconnected periodic recesses; wherein the plurality of interconnected periodic recesses are occupied with the second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second continuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 10, 2017
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Julia Kozhukh, Teresa Brugarolas Brufau, Bainian Qian
  • Publication number: 20160379840
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of >10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Publication number: 20160375553
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 10 to 300 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Publication number: 20160375552
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 10 to 300 msec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Publication number: 20160375543
    Abstract: A chemical mechanical polishing pad is provided, comprising: a chemical mechanical polishing layer having a polishing surface; wherein the chemical mechanical polishing layer is formed by combining (a) a poly side (P) liquid component, comprising: an amine-carbon dioxide adduct; and, at least one of a polyol, a polyamine and a alcohol amine; and (b) an iso side (I) liquid component, comprising: polyfunctional isocyanate; wherein the chemical mechanical polishing layer has a porosity of ?10 vol %; wherein the chemical mechanical polishing layer has a Shore D hardness of <40; and, wherein the polishing surface is adapted for polishing a substrate. Methods of making and using the same are also provided.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, David Michael Veneziale, Yuhua Tong, Diego Lugo, Jeffrey B. Miller, George C. Jacob, Marty W. DeGroot, Tony Quan Tran, Marc R. Stack, Andrew Wank, Fengji Yeh
  • Publication number: 20160375555
    Abstract: A method of forming a chemical mechanical polishing pad polishing layer is provided, including: providing a mold having a base with a negative of a groove pattern; providing a poly side (P) liquid component; providing an iso side (I) liquid component; providing a pressurized gas; providing an axial mixing device; introducing the poly side (P) liquid component, the iso side (I) liquid component and the pressurized gas to the axial mixing device to form a combination; discharging the combination from the axial mixing device at a velocity of 5 to 1,000 m/sec toward the base; allowing the combination to solidify into a cake; deriving the chemical mechanical polishing pad polishing layer from the cake; wherein the chemical mechanical polishing pad polishing layer has a polishing surface with the groove pattern formed into the polishing surface; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 29, 2016
    Inventors: David Michael Veneziale, Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, Yuhua Tong, Jeffrey B. Miller, Diego Lugo, George C. Jacob, Marty W. DeGroot, Andrew Wank, Fengji Yeh
  • Publication number: 20160375544
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of interconnected periodic recesses; wherein the plurality of interconnected periodic recesses are occupied with the second continuous non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second continuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Julia Kozhukh, Teresa Brugarolas Brufau, Bainian Qian
  • Publication number: 20160375545
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a first continuous non-fugitive polymeric phase and a second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has a plurality of periodic recesses; wherein the plurality of periodic recesses are occupied with the second non-fugitive polymeric phase; wherein the first continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the second non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Julia Kozhukh, Teresa Brugarolas Brufau, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Jeffrey James Hendron
  • Publication number: 20160375554
    Abstract: A method of forming a chemical mechanical polishing pad composite polishing layer is provided, including: providing a first polishing layer component of a first continuous non-fugitive polymeric phase having a plurality of periodic recesses; discharging a combination toward the first polishing layer component at a velocity of 5 to 1,000 m/sec, filling the plurality of periodic recesses with the combination; allowing the combination to solidify in the plurality of periodic recesses forming a second non-fugitive polymeric phase giving a composite structure; and, deriving the chemical mechanical polishing pad composite polishing layer from the composite structure, wherein the chemical mechanical polishing pad composite polishing layer has a polishing surface on the polishing side of the first polishing layer component; and wherein the polishing surface is adapted for polishing a substrate.
    Type: Application
    Filed: May 24, 2016
    Publication date: December 29, 2016
    Inventors: Bainian Qian, Teresa Brugarolas Brufau, Julia Kozhukh, David Michael Veneziale, Yuhua Tong, Diego Lugo, George C. Jacob, Jeffrey B. Miller, Tony Quan Tran, Marc R. Stack, Andrew Wank, Jeffrey James Hendron
  • Patent number: 9518324
    Abstract: Copolymers of diglycidyl ether terminated polysiloxane compounds and non-aromatic polyamines are used in the preparation of dielectric materials for electroless metal plating. The copolymers may be used in the manufacture of printed circuit boards such as in cleaning and conditioning through-holes prior to electroless metallization.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: December 13, 2016
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova, Kristen M. Milum
  • Patent number: 9499912
    Abstract: Copolymers of diglycidyl ether terminated polysiloxane compounds and non-aromatic polyamines are used in the preparation of dielectric materials for electroless metal plating. The copolymers may be used in the manufacture of printed circuit boards such as in cleaning and conditioning through-holes prior to electroless metallization.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: November 22, 2016
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova, Kristen M. Milum
  • Publication number: 20160319447
    Abstract: Reaction products of heterocyclic nitrogen compounds, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate metal with good surface properties and good physical reliability.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova
  • Patent number: 9457449
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer having a polishing surface; wherein the polishing layer comprises a continuous non-fugitive polymeric phase and a discontinuous non-fugitive polymeric phase; wherein the continuous non-fugitive polymeric phase has a plurality of periodic recesses; wherein the plurality of periodic recesses are occupied with the discontinuous non-fugitive polymeric phase; wherein the continuous non-fugitive polymeric phase has an open cell porosity of ?6 vol %; wherein the discontinuous non-fugitive polymeric phase contains an open cell porosity of ?10 vol %; and, wherein the polishing surface is adapted for polishing a substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 4, 2016
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Teresa Brugarolas Brufau, Julia Kozhukh, Bainian Qian
  • Patent number: 9439294
    Abstract: Reaction products of heterocyclic nitrogen compounds, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate metal with good surface properties and good physical reliability.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: September 6, 2016
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova
  • Patent number: 9435045
    Abstract: Reaction products of guanidine compounds or salts thereof, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate with good surface properties of the metal deposits and good physical reliability.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: September 6, 2016
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova, Maria Anna Rzeznik
  • Patent number: 9403762
    Abstract: Reaction products of guanidine compounds or salts thereof, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate with good surface properties of the metal deposits and good physical reliability.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: August 2, 2016
    Inventors: Julia Kozhukh, Zuhra I Niazimbetova, Maria Anna Rzeznik
  • Patent number: 9404193
    Abstract: Reaction products of guanidine compounds or salts thereof, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate with good surface properties of the metal deposits and good physical reliability.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: August 2, 2016
    Inventors: Julia Kozhukh, Zuhra I. Niazimbetova, Maria Anna Rzeznik
  • Publication number: 20160208400
    Abstract: Reaction products of guanidine compounds or salts thereof, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate with good surface properties of the metal deposits and good physical reliability.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 21, 2016
    Inventors: Julia KOZHUKH, Zuhra I. NIAZIMBETOVA, Maria Anna RZEZNIK
  • Publication number: 20160201209
    Abstract: Reaction products of guanidine compounds or salts thereof, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate with good surface properties of the metal deposits and good physical reliability.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 14, 2016
    Inventors: Julia KOZHUKH, Zuhra I. NIAZIMBETOVA, Maria Anna RZEZNIK
  • Publication number: 20160143152
    Abstract: Reaction products of heterocyclic nitrogen compounds, polyepoxide compounds and polyhalogen compounds may be used as levelers in metal electroplating baths, such as copper electroplating baths, to provide good throwing power. Such reaction products may plate metal with good surface properties and good physical reliability.
    Type: Application
    Filed: April 16, 2014
    Publication date: May 19, 2016
    Inventors: Julia KOZHUKH, Zuhra I. NIAZIMBETOVA