Patents by Inventor Jun Sawada

Jun Sawada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9881252
    Abstract: One embodiment of the invention provides a system comprising at least one data-to-spike converter unit for converting input numeric data received by the system to spike event data. Each data-to-spike converter unit is configured to support one or more spike codes.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Steven K. Esser, Myron D. Flickner, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada, Benjamin G. Shaw
  • Patent number: 9859704
    Abstract: An embodiment includes a tie-off circuit includes multiple field effect transistors (FETs), and a node isolation circuit that is connected to a first output node and a second output node of the tie-off circuit. The node isolation circuit consists of a first FET with a third output node and a second FET with a fourth output node. The second output node includes a logical LO node and is coupled to a gate of the first FET and generates a TIE HI output.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Chen Guo, Yutaka Nakamura, Jun Sawada
  • Patent number: 9852006
    Abstract: Embodiments of the invention relate to a neural network circuit comprising a memory block for maintaining neuronal data for multiple neurons, a scheduler for maintaining incoming firing events targeting the neurons, and a computational logic unit for updating the neuronal data for the neurons by processing the firing events. The network circuit further comprises at least one permutation logic unit enabling data exchange between the computational logic unit and at least one of the memory block and the scheduler. The network circuit further comprises a controller for controlling the computational logic unit, the memory block, the scheduler, and each permutation logic unit.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9797946
    Abstract: Embodiments of the invention provide a scan test system for an integrated circuit comprising multiple processing elements. The system comprises at least one scan input component and at least one scan clock component. Each scan input component is configured to provide a scan input to at least two processing elements. Each scan clock component is configured to provide a scan clock signal to at least two processing elements. The system further comprises at least one scan select component for selectively enabling a scan of at least one processing element. Each processing element is configured to scan in a scan input and scan out a scan output when said the processing element is scan-enabled. The system further comprises an exclusive-OR tree comprising multiple exclusive-OR logic gates. The said exclusive-OR tree generates a parity value representing a parity of all scan outputs scanned out from all scan-enabled processing elements.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: October 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9792251
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20170286825
    Abstract: A multiplexed neural core circuit according to one embodiment comprises, for an integer multiplexing factor T that is greater than zero, T sets of electronic neurons, T sets of electronic axons, where each set of the T sets of electronic axons corresponds to one of the T sets of electronic neurons, and a synaptic interconnection network comprising a plurality of electronic synapses that each interconnect a single electronic axon to a single electronic neuron, where the interconnection network interconnects each set of the T sets of electronic axons to its corresponding set of electronic neurons.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Steven K. Esser, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9747545
    Abstract: Embodiments of the invention relate to a system for controlling program execution. The system comprises an event-based core controller including a set of state-preserving elements. The core controller starts and stops the program execution based on one or more control signals. For each instruction of the program, the core controller triggers a target component to execute the instruction by generating and sending an instruction and/or a trigger pulse to the target component.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20170199241
    Abstract: Embodiments of the invention provide a scan test system for an integrated circuit comprising multiple processing elements. The system comprises at least one scan input component and at least one scan clock component. Each scan input component is configured to provide a scan input to at least two processing elements. Each scan clock component is configured to provide a scan clock signal to at least two processing elements. The system further comprises at least one scan select component for selectively enabling a scan of at least one processing element. Each processing element is configured to scan in a scan input and scan out a scan output when said the processing element is scan-enabled. The system further comprises an exclusive-OR tree comprising multiple exclusive-OR logic gates. The said exclusive-OR tree generates a parity value representing a parity of all scan outputs scanned out from all scan-enabled processing elements.
    Type: Application
    Filed: November 19, 2015
    Publication date: July 13, 2017
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20170141568
    Abstract: An embodiment includes a tie-off circuit includes multiple field effect transistors (FETs), and a node isolation circuit that is connected to a first output node and a second output node of the tie-off circuit. The node isolation circuit consists of a first FET with a third output node and a second FET with a fourth output node. The second output node includes a logical LO node and is coupled to a gate of the first FET and generates a TIE HI output.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Inventors: Chen Guo, Yutaka Nakamura, Jun Sawada
  • Publication number: 20170124024
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Application
    Filed: January 6, 2017
    Publication date: May 4, 2017
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, JR., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9601921
    Abstract: Embodiments relate to electrostatic discharge (ESD) protection. One embodiment includes a tie-off circuit including a multiple field effect transistors (FETs), a first internal node, a second internal node, a first output node and a second output node. A node isolation circuit is connected to the first output node and the second output node of the tie-off circuit. The node isolation circuit includes a first FET with a third output node and a second FET with a fourth output node. The third output node and the fourth output node are electrically isolated from the first internal node and the second internal node.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Chen Guo, Yutaka Nakamura, Jun Sawada
  • Publication number: 20170068885
    Abstract: One embodiment provides a system comprising a memory device for maintaining deterministic neural data relating to a digital neuron and a logic circuit for deterministic neural computation and stochastic neural computation. Deterministic neural computation comprises processing a neuronal state of the neuron based on the deterministic neural data maintained. Stochastic neural computation comprises generating stochastic neural data relating to the neuron and processing the neuronal state of the neuron based on the stochastic neural data generated.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9588937
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9558443
    Abstract: One embodiment provides a system comprising a memory device for maintaining deterministic neural data relating to a digital neuron and a logic circuit for deterministic neural computation and stochastic neural computation. Deterministic neural computation comprises processing a neuronal state of the neuron based on the deterministic neural data maintained. Stochastic neural computation comprises generating stochastic neural data relating to the neuron and processing the neuronal state of the neuron based on the stochastic neural data generated.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: January 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160323137
    Abstract: Embodiments of the invention provide a neurosynaptic network circuit comprising multiple neurosynaptic devices including a plurality of neurosynaptic core circuits for processing one or more data packets. The neurosynaptic devices further include a routing system for routing the data packets between the core circuits. At least one of the neurosynaptic devices is faulty. The routing system is configured for selectively bypassing each faulty neurosynaptic device when processing and routing the data packets.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 3, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160321539
    Abstract: The present invention provides a system comprising multiple core circuits. Each core circuit comprises multiple electronic axons for receiving event packets, multiple electronic neurons for generating event packets, and a fanout crossbar including multiple electronic synapse devices for interconnecting the neurons with the axons. The system further comprises a routing system for routing event packets between the core circuits. The routing system virtually connects each neuron with one or more programmable target axons for the neuron by routing each event packet generated by the neuron to the target axons. Each target axon for each neuron of each core circuit is an axon located on the same core circuit as, or a different core circuit than, the neuron.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 3, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160321537
    Abstract: Embodiments of the invention relate to a neural network circuit comprising a memory block for maintaining neuronal data for multiple neurons, a scheduler for maintaining incoming firing events targeting the neurons, and a computational logic unit for updating the neuronal data for the neurons by processing the firing events. The network circuit further comprises at least one permutation logic unit enabling data exchange between the computational logic unit and at least one of the memory block and the scheduler. The network circuit further comprises a controller for controlling the computational logic unit, the memory block, the scheduler, and each permutation logic unit.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 3, 2016
    Applicant: International Business Machines Corporation
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160232128
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arhur, John E. Barth, JR., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160224889
    Abstract: Embodiments of the invention provide a system for scaling multi-core neurosynaptic networks. The system comprises multiple network circuits. Each network circuit comprises a plurality of neurosynaptic core circuits. Each core circuit comprises multiple electronic neurons interconnected with multiple electronic axons via a plurality of electronic synapse devices. An interconnect fabric couples the network circuits. Each network circuit has at least one network interface. Each network interface for each network circuit enables data exchange between the network circuit and another network circuit by tagging each data packet from the network circuit with corresponding routing information.
    Type: Application
    Filed: October 9, 2013
    Publication date: August 4, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9368489
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: June 14, 2016
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada