Patents by Inventor Jun-Ying Zhang

Jun-Ying Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8298032
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 30, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Patent number: 8273663
    Abstract: A method is provided for anisotropically etching semiconductor materials such as II-VI and III-V semiconductors. The method involves repeated cycles of plasma sputter etching of semiconductor material with a non-reactive gas through an etch mask, followed by passivation of the side walls by plasma polymerization using a polymer former. Using this procedure small pixels in down-converted light-emitting diode devices can be fabricated.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: September 25, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Terry L. Smith, Jun-Ying Zhang
  • Publication number: 20120234460
    Abstract: A light extraction film having nanoparticles with engineered periodic structures. The light extraction film includes a substantially transparent substrate, low index one-dimensional or two-dimensional periodic structures on the substrate, and a high index planarizing backfill layer applied over the periodic structures. Light scattering nanoparticles are either applied in a layer over the periodic structures or included in the backfill layer.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Inventors: Jun-Ying Zhang, Encai Hao, Vivian W. Jones, Terry L. Smith, Sergey A. Lamansky, Ha T. Le, Dawn Qiu, William B. Kolb, James M. Battiato, David B. Stegall
  • Publication number: 20120225517
    Abstract: Etched substrates, and particularly, light-absorbing etched substrates, and methods for making such substrates are described.
    Type: Application
    Filed: November 8, 2010
    Publication date: September 6, 2012
    Inventors: Jun-Ying Zhang, Terry L. Smith, Bing Hao
  • Patent number: 8249409
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, Jr., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey A. Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Patent number: 8179034
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 15, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Publication number: 20120107556
    Abstract: Superhydrophobic films and methods of making such films are disclosed. More particularly, superhydrophobic films having durable nanostructures with high contrast ratios and various methods of producing such films are disclosed.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 3, 2012
    Inventors: Jun-Ying Zhang, Terry L. Smith, Berkan K. Endres, Mark K. Debe
  • Patent number: 8115920
    Abstract: Provided is a method of making microarrays that includes providing a substrate with discrete first microfeatures that have a first profile, and depositing vapor-coated materials onto the first microfeatures to form second microfeatures having a second profile that is substantially different from the first profile. Also provided is a method of adding a replication material to the vapor-coated microfeatures to form a mold. Microarrays made by this method can be used as substrates for surface-enhanced Raman spectroscopy (SERS).
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: February 14, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jun-Ying Zhang, Terry L. Smith, Haiyan Zhang, Jerome C. Porque, Ding Wang, John C. Hulteen, Lisa A. Dick
  • Publication number: 20120012739
    Abstract: An optical device includes a light source (102), an optical microresonator (118) that supports at least a first optical guided mode (128) propagating along a first direction and at least a second optical guided mode (164) propagating along a second direction different from the first direction, and a detector (110,114). At least the first optical guided mode is excited by the emitted broadband light without the second optical guided mode being excited by the emitted broadband light. In some embodiments The detector receives and wavelength-averages light from the at least a second optical guided mode of the optical microresonator. In some embodiments, at least one of the light source, the microresonator and the detector is tunable.
    Type: Application
    Filed: December 17, 2009
    Publication date: January 19, 2012
    Inventors: Barry J. Koch, Terry L. Smith, Jun-Ying Zhang, Yasha Yi
  • Patent number: 8067110
    Abstract: A sorbent media protective device includes an enclosure having a gas inlet, gas outlet and a thin-film multilayer indicator. The thin-film multilayer indicator is proximate sorbent media that can sorb a vapor of interest flowing from the gas inlet towards the gas outlet. The indicator includes a porous detection layer whose optical thickness changes in the presence of the vapor, located between a semireflective layer and a reflective layer permeable to the vapor. With equilibration at the applied vapor concentration between at least a portion of the media and the vapor, the vapor can pass through the reflective layer into the detection layer and change the detection layer optical thickness sufficiently to cause a visibly discernible change in the indicator appearance if viewed through the semireflective layer.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 29, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Neal A. Rakow, James P. Mathers, Jun-Ying Zhang, Dora M. Paolucci, Richard J. Poirier, Moses M. David, John E. Trend, Michael S. Wendland
  • Publication number: 20110281068
    Abstract: A nanostructured article comprises a matrix and a nanoscale dispersed phase. The nanostructured article has a random nanostructured anisotropic surface.
    Type: Application
    Filed: December 18, 2009
    Publication date: November 17, 2011
    Inventors: Moses M. David, Andrew K. Hartzell, Timothy J. Hebrink, Ta-Hua Yu, Jun-Ying Zhang
  • Publication number: 20110262093
    Abstract: A light extraction film having internal nanostructures and external microstructures for organic light emitting diode (OLED) devices. The light extraction film includes a flexible substantially transparent film, a low index nanostructured layer applied to the film, and a high index planarizing backfill layer applied over the nanostructured layer. External optical microstructures are applied to the flexible substantially transparent film on a side opposite the nanostructured layer to enhance light extraction from the OLED devices while providing for a more uniform luminance distribution.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Inventors: Sergey A. Lamansky, Terry L. Smith, Jun-Ying Zhang, Leslie A. Todero, Encai Hao, Ha T. Le, Ding Wang, Fei Lu, Shoichi Masuda
  • Publication number: 20110261461
    Abstract: A light extraction film laminated to a glass substrate for organic light emitting diode (OLED) devices. The light extraction film includes a flexible substantially transparent film, a low index nanostructured layer applied to the film, and a high index planarizing backfill layer applied over the nanostructured layer. A glass substrate is laminated to the flexible substantially transparent film on a side opposite the nanostructured layer and including an ultra-low index region between the film and the glass substrate. The ultra-low index region is used to reduce optical losses occurring with the glass substrate.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Inventors: Ha T. Le, Jun-Ying Zhang, Sergey A. Lamansky, Scott M. Tapio, Encai Hao, David B. Stegall, Serena L. Mollenhauer
  • Publication number: 20110243500
    Abstract: Lightguides, devices incorporating lightguides, processes for making lightguides, and tools used to make lightguides are described. A lightguide includes light extractors arranged in a plurality of regions on a surface of the lightguide. The orientation of light extractors in each region is arranged to enhance uniformity and brightness across a surface of the lightguide and to provide enhanced defect hiding. The efficiency of the light extractors is controlled by the angle of a given light extractor face with respect to a light source illuminating the light guide.
    Type: Application
    Filed: December 8, 2009
    Publication date: October 6, 2011
    Inventors: Tzu-Chen Lee, David A. Ender, Guoping Mao, Jun-Ying Zhang, James B. Willoughby
  • Publication number: 20110229992
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Publication number: 20110200293
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, JR., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey A. Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Patent number: 7957621
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: June 7, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, Jr., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey A. Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Publication number: 20110117686
    Abstract: Methods of fabricating light extractors are disclosed. The method of fabricating an optical construction for extracting light from a substrate includes the steps of: (a) providing a substrate that has a surface; (b) disposing a plurality of structures on the surface of the substrate, where the plurality of structures form open areas that expose the surface of the substrate; (c) shrinking at least some of the structures; and (d) applying an overcoat to cover the shrunk structures and the surface of the substrate in the open areas.
    Type: Application
    Filed: June 3, 2009
    Publication date: May 19, 2011
    Inventors: Jun-Ying Zhang, Michael A. Haase, Terry L. Smith
  • Publication number: 20110108956
    Abstract: A process for etching semiconductors, such as II-VI or III-V semiconductors is provided. The method includes sputter etching the semiconductor through an etching mask using a nonreactive gas, removing the semiconductor and cleaning the chamber with a reactive gas. The etching mask includes a photoresist. Using this method, light-emitting diodes with light extracting elements or nano/micro-structures etched into the semiconductor material can be fabricated.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 12, 2011
    Inventors: Michael A. HAASE, Terry L. SMITH, Jun-Ying ZHANG
  • Publication number: 20110108861
    Abstract: A method is provided for anisotropically etching semiconductor materials such as II-VI and III-V semiconductors. The method involves repeated cycles of plasma sputter etching of semiconductor material with a non-reactive gas through an etch mask, followed by passivation of the side walls by plasma polymerization using a polymer former. Using this procedure small pixels in down-converted light-emitting diode devices can be fabricated.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 12, 2011
    Inventors: Terry L. SMITH, Jun-Ying Zhang