Patents by Inventor Jung-Dal Choi

Jung-Dal Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160247819
    Abstract: A semiconductor device includes a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers is provided on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel, the vertical channel being in contact with the substrate at a contact region that comprises a semiconducting region.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: JAE-SUNG SIM, JUNG-DAL CHOI
  • Patent number: 9425198
    Abstract: A semiconductor device includes a substrate, a strain-relaxed buffer layer on the substrate, at least one well in the strain-relaxed buffer layer, a first channel layer on the strain-relaxed buffer layer, and a second channel layer on the well. A lattice constant of material constituting the first well is less than a lattice constant of the material constituting the strain-relaxed buffer layer, but a lattice constant of material constituting the second well is greater than the lattice constant of the material constituting the strain-relaxed buffer layer.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: August 23, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Kyu Lee, Jae-Hwan Lee, Tae-Yong Kwon, Sang-Su Kim, Jung-Dal Choi
  • Patent number: 9391134
    Abstract: A fin field effect transistor includes a first fin structure and a second fin structures both protruding from a substrate, first and second gate electrodes on the first and second fin structures, respectively, and a gate dielectric layer between each of the first and second fin structures and the first and second gate electrodes, respectively. Each of the first and second fin structures includes a buffer pattern on the substrate, a channel pattern on the buffer pattern, and an etch stop pattern provided between the channel pattern and the substrate. The etch stop pattern includes a material having an etch resistivity greater than that of the buffer pattern.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: July 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang-Jae Yang, Sang-Su Kim, Jae-Hwan Lee, Jung-Dal Choi
  • Patent number: 9391269
    Abstract: A variable resistance memory device includes a plurality of first conductive lines, a plurality of second conductive lines, a plurality of memory cells, a plurality of first air gaps and a plurality of second air gaps. The first conductive line extends in a first direction. The second conductive line is over the first conductive line and extends in a second direction crossing the first direction. The memory cell includes a variable resistance device. The memory cell is located at an intersection region of the first conductive line and the second conductive line. The first air gap extends in the first direction between the memory cells. The second air gap extends in the second direction between the memory cells.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: July 12, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Moo Lee, Youn-Seon Kang, Seung-Jae Jung, Jung-Dal Choi
  • Patent number: 9385138
    Abstract: In a semiconductor device and a method of forming such a device, the semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers is provided on the substrate. A plurality of gate patterns is provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel, the vertical channel being in contact with the substrate at a contact region that comprises a semiconducting region.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 5, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-Sung Sim, Jung-Dal Choi
  • Patent number: 9373664
    Abstract: A variable resistance memory device, and methods of manufacturing the same, include a plurality of first conductive structures extending in a first direction, a plurality of second conductive structures extending in a second direction crossing the first direction over the first conductive structures, the second conductive structures, and a plurality of memory cells that are formed at intersections at which the first conductive structures and the second conductive structures overlap each other, and each includes a selection element and a variable resistance element sequentially stacked. An upper surface of each of the first conductive structures has a width in the second direction less than a width of a bottom surface of each of the selection elements.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: June 21, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Jun Seong, Youn-Seon Kang, Seung-Jae Jung, Jung-Dal Choi
  • Patent number: 9349879
    Abstract: A non-volatile memory device may include a semiconductor substrate and an isolation layer on the semiconductor substrate wherein the isolation layer defines an active region of the semiconductor substrate. A tunnel insulation layer may be provided on the active region of the semiconductor substrate, and a charge storage pattern may be provided on the tunnel insulation layer. An interface layer pattern may be provided on the charge storage pattern, and a blocking insulation pattern may be provided on the interface layer pattern. Moreover, the block insulation pattern may include a high-k dielectric material, and the interface layer pattern and the blocking insulation pattern may include different materials. A control gate electrode may be provided on the blocking insulating layer so that the blocking insulation pattern is between the interface layer pattern and the control gate electrode. Related methods are also discussed.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 24, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Chang-Seok Kang, Sung-Il Chang, Jung-Dal Choi
  • Patent number: 9318419
    Abstract: Conductive line structures, and methods of forming the same, include first and second pattern structures, insulation layer patterns and an insulating interlayer. The first pattern structure includes a conductive line pattern and a hard mask stacked, and extends in a first direction. The second pattern structure includes a second conductive line pattern and another hard mask stacked, and at least a portion of the pattern structure extends in the first direction. The insulation layer patterns contact end portions of the pattern structures. The first pattern structure and an insulation layer pattern form a closed curve shape in plan view, and the second pattern structure and another insulation layer pattern form another closed curve shape in plan view. The insulating interlayer covers upper portions of the pattern structures and the insulation layer patterns, an air gap between the pattern structures, and another air gap between the insulation layer patterns.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: April 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sok-Won Lee, Joon-Hee Lee, Jung-Dal Choi, Seong-Min Jo
  • Publication number: 20160104705
    Abstract: A semiconductor device includes a substrate having a logic device region including logic devices thereon, and an input/output (I/O) device region including I/O devices thereon adjacent the logic device region. A first fin field-effect transistor (FinFET) on the logic device region includes a first semiconductor fin protruding from the substrate, and a triple-gate structure having a first gate dielectric layer and a first gate electrode thereon. A second FinFET on the I/O device region includes a second semiconductor fin protruding from the substrate, and a double-gate structure having a second gate dielectric layer and a second gate electrode thereon. The first and second gate dielectric layers have different thicknesses. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: June 29, 2015
    Publication date: April 14, 2016
    Inventors: Eun-ae Chung, Jung-dal Choi, Toshiro Nakanishi, Yu-bin Kim, Gab-jin Nam, Dong-kyu Lee, Guangfan Jiao
  • Publication number: 20160049447
    Abstract: A resistive memory device includes a plurality of memory cell pillars arranged in a line in one direction and each having a memory layer and a top electrode layer connected to the memory layer, a top conductive line having a plurality of protrusions extending downwardly and between which pockets in the bottom of the top conductive line are defined, and a plurality of insulating pillars. The protrusions of the top conductive line face and are electrically connected to the memory cell pillars, respectively, so as to be electrically connected to the memory layer through the top electrode layer of the memory cell pillar. The insulating pillars extend from insulating spaces, between side wall surfaces of the memory layers and top electrode layers of the memory cell pillars, into the pockets in the bottom of the top conductive line.
    Type: Application
    Filed: June 11, 2015
    Publication date: February 18, 2016
    Inventors: SEUNG-JAE JUNG, YOUN-SEON KANG, JUNG-DAL CHOI
  • Publication number: 20160027845
    Abstract: A variable resistance memory device, and methods of manufacturing the same, include a plurality of first conductive structures extending in a first direction, a plurality of second conductive structures extending in a second direction crossing the first direction over the first conductive structures, the second conductive structures, and a plurality of memory cells that are formed at intersections at which the first conductive structures and the second conductive structures overlap each other, and each includes a selection element and a variable resistance element sequentially stacked. An upper surface of each of the first conductive structures has a width in the second direction less than a width of a bottom surface of each of the selection elements.
    Type: Application
    Filed: April 9, 2015
    Publication date: January 28, 2016
    Inventors: Dong-Jun SEONG, Youn-Seon KANG, Seung-Jae JUNG, Jung-Dal CHOI
  • Patent number: 9202932
    Abstract: In a method of manufacturing a semiconductor device, a dielectric layer structure and a control gate layer can be formed sequentially on a substrate. The control gate layer can be partially etched to form a plurality of control gates. A gate spacer and a sacrificial spacer sequentially can be stacked on a sidewall of the control gate and on a portion of the dielectric layer structure. The dielectric layer structure can be partially etched using the sacrificial spacer and the gate spacer as an etching mask to form a plurality of dielectric layer structure patterns. The sacrificial spacer can be removed. An insulating interlayer can be formed on the substrate to form an air gap. The insulating interlayer can cover the dielectric layer structure pattern, the gate spacer and the control gate. The air gap can extend between the adjacent gate spacers and between the adjacent dielectric layer structure patterns.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 1, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Woo Paek, Jung-Dal Choi, Young-Seop Rah, Byung-Kwan You, Seok-Won Lee
  • Patent number: 9184164
    Abstract: A nonvolatile memory device includes a string selection transistor, a plurality of memory cell transistors, and a ground selection transistor electrically connected in series to the string selection transistor and to the pluralities of memory cell transistors. First impurity layers are formed at boundaries of the channels and the source/drain regions of the memory cell transistors. The first impurity layers are doped with opposite conductivity type impurities relative to the source/drain regions of the memory cell transistors. Second impurity layers are formed at boundaries between a channel and a drain region of the string selection transistor and between a channel and a source region of the ground selection transistor. The second impurity layers are doped with the same conductivity type impurities as the first impurity layers and have a higher impurity concentration than the first impurity layers.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi
  • Patent number: 9159432
    Abstract: In method of programming a nonvolatile memory device including first and second cell strings that are coupled to one bitline, a first channel of the first cell string and a second channel of the second cell string are precharged by applying a first voltage to the bitline, one cell string is selected from the first and second cell strings, and a memory cell included in the selected cell string is programmed by applying a second voltage greater than a ground voltage and less than the first voltage to the bitline.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jee-Yeon Kang, Dong-Hoon Jang, Jung-Dal Choi
  • Patent number: 9111619
    Abstract: A semiconductor device includes a bit line, a first cell string and a second cell string. The first cell string includes a first selecting transistor connected to the bit line in series and having a threshold voltage greater than a first reference voltage, a second selecting transistor having a threshold voltage smaller than a second reference voltage, cell transistors and a ground selecting transistor. The second cell string includes a third selecting transistor connected to the bit line in series and having a threshold voltage smaller than the first reference voltage, a fourth selecting transistor having a threshold voltage greater than the second reference voltage, cell transistors and a ground selecting transistor. A channel region of the first selecting transistor has an enhancement mode and a first conductive type. A channel region of the third selecting transistor has a depletion mode and a second conductive type.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 18, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi, Do-Hyun Lee
  • Publication number: 20150214478
    Abstract: A variable resistance memory device includes a plurality of first conductive lines, a plurality of second conductive lines, a plurality of memory cells, a plurality of first air gaps and a plurality of second air gaps. The first conductive line extends in a first direction. The second conductive line is over the first conductive line and extends in a second direction crossing the first direction. The memory cell includes a variable resistance device. The memory cell is located at an intersection region of the first conductive line and the second conductive line. The first air gap extends in the first direction between the memory cells. The second air gap extends in the second direction between the memory cells.
    Type: Application
    Filed: August 12, 2014
    Publication date: July 30, 2015
    Inventors: Jung-Moo Lee, Youn-Seon Kang, Seung-Jae Jung, Jung-Dal Choi
  • Publication number: 20150061132
    Abstract: Conductive line structures, and methods of forming the same, include first and second pattern structures, insulation layer patterns and an insulating interlayer. The first pattern structure includes a conductive line pattern and a hard mask stacked, and extends in a first direction. The second pattern structure includes a second conductive line pattern and another hard mask stacked, and at least a portion of the pattern structure extends in the first direction. The insulation layer patterns contact end portions of the pattern structures. The first pattern structure and an insulation layer pattern form a closed curve shape in plan view, and the second pattern structure and another insulation layer pattern form another closed curve shape in plan view. The insulating interlayer covers upper portions of the pattern structures and the insulation layer patterns, an air gap between the pattern structures, and another air gap between the insulation layer patterns.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 5, 2015
    Inventors: Sok-Won LEE, Joon-Hee LEE, Jung-Dal CHOI, Seong-Min JO
  • Publication number: 20150064865
    Abstract: In a semiconductor device and a method of forming such a device, the semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers is provided on the substrate. A plurality of gate patterns is provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel, the vertical channel being in contact with the substrate at a contact region that comprises a semiconducting region.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 5, 2015
    Inventors: Jae-Sung Sim, Jung-Dal Choi
  • Patent number: 8969947
    Abstract: A memory device includes a substrate, a semiconductor column extending perpendicularly from the substrate and a plurality of spaced-apart charge storage cells disposed along a sidewall of the semiconductor column. Each of the storage cells includes a tunneling insulating layer disposed on the sidewall of the semiconductor column, a polymer layer disposed on the tunneling insulating layer, a plurality of quantum dots disposed on or in the polymer layer and a blocking insulating layer disposed on the polymer layer.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-goo Lee, Jung-dal Choi, Young-woo Park
  • Publication number: 20150035009
    Abstract: A fin field effect transistor includes a first fin structure and a second fin structures both protruding from a substrate, first and second gate electrodes on the first and second fin structures, respectively, and a gate dielectric layer between each of the first and second fin structures and the first and second gate electrodes, respectively. Each of the first and second fin structures includes a buffer pattern on the substrate, a channel pattern on the buffer pattern, and an etch stop pattern provided between the channel pattern and the substrate. The etch stop pattern includes a material having an etch resistivity greater than that of the buffer pattern.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 5, 2015
    Inventors: Chang-Jae YANG, Sang-Su KIM, Jae-Hwan LEE, Jung-Dal CHOI