Patents by Inventor Junichi Wada

Junichi Wada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100314602
    Abstract: A nonvolatile memory device includes: a first conductive layer; a second conductive layer; a first resistance change layer provided between the first conductive layer and the second conductive layer and having an electrical resistance changing with at least one of an applied electric field and a passed current; and a first lateral layer provided on a lateral surface of the first resistance change layer and having an oxygen concentration higher than an oxygen concentration in the first resistance change layer
    Type: Application
    Filed: March 22, 2010
    Publication date: December 16, 2010
    Inventors: Kensuke Takano, Yoshio Ozawa, Katsuyuki Sekine, Junichi Wada
  • Patent number: 7791202
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20100216305
    Abstract: A method for fabricating a semiconductor device, includes forming a dielectric film above a substrate; forming an opening in the dielectric film; forming a ruthenium (Ru) film at least on a bottom surface of the opening; and filling in the opening with a tungsten (W) film in which the Ru film is formed, according to a chemical vapor deposition (CVD) method by hydrogen (H2) reduction.
    Type: Application
    Filed: November 6, 2009
    Publication date: August 26, 2010
    Inventor: Junichi WADA
  • Publication number: 20100115479
    Abstract: A method for generating a pattern includes reading out an interconnect layout and a hole layout, the interconnect layout prescribing interconnect patterns, the hole layout prescribing hole patterns configured to connect to the interconnect patterns; extracting one of the hole patterns to be connected within the same interconnect layer level to one of the interconnect patterns in a pattern processing area; extracting a first processing area including the extracted hole pattern; calculating a first pattern density of the interconnect patterns included in the first processing area; and generating first additional patterns in the first processing area based on the first pattern density.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Hatano, Motoya Okazaki, Junichi Wada, Takeshi Nishioka, Hisashi Kaneko, Takeshi Fujimaki, Kazuyuki Higashi, Kanji Yoshida, Noriaki Matsunaga
  • Patent number: 7667332
    Abstract: A method for generating a pattern includes reading out an interconnect layout and a hole layout, the interconnect layout prescribing interconnect patterns, the hole layout prescribing hole patterns configured to connect to the interconnect patterns; extracting one of the hole patterns to be connected within the same interconnect layer level to one of the interconnect patterns in a pattern processing area; extracting a first processing area including the extracted hole pattern; calculating a first pattern density of the interconnect patterns included in the first processing area; and generating first additional patterns in the first processing area based on the first pattern density.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Hatano, Motoya Okazaki, Junichi Wada, Takeshi Nishioka, Hisashi Kaneko, Takeshi Fujimaki, Kazuyuki Higashi, Kenji Yoshida, Noriaki Matsunaga
  • Patent number: 7595714
    Abstract: An ignition coil includes a primary coil (14), a secondary coil (16) disposed on an outer circumferential side of the primary coil and configured to be boosted by mutual induction with the primary coil, an outer periphery core (18) having an opposing surface (183), which is opposed to an outer peripheral surface (160) of the secondary coil, and an insulating member (20) disposed between the outer peripheral surface and the opposing surface. The secondary coil and the outer periphery core are arranged such that a shortest distance between the outer peripheral surface and an outer edge (183a, 183b) of the opposing surface is larger than a shortest distance between the outer peripheral surface and the opposing surface.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: September 29, 2009
    Assignee: Denso Corporation
    Inventor: Junichi Wada
  • Publication number: 20090236746
    Abstract: A semiconductor device includes a contact plug electrically connected to a semiconductor substrate; a first barrier metal film with a columnar crystal structure arranged in contact with the semiconductor substrate at least on a bottom surface side of the contact plug; an amorphous film made of a material of the first barrier metal film arranged in contact with the first barrier metal film at least on the bottom surface side of the contact plug; a second barrier metal film made of a material identical to that of the first barrier metal film and having a columnar crystal structure, at least a portion of which is arranged in contact with the amorphous film on the bottom surface side and a side surface side of the contact plug; and a dielectric film arranged on the side surface side of the contact plug.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 24, 2009
    Inventors: Masayuki KITAMURA, Junichi Wada, Hideto Matsuyama
  • Publication number: 20090108972
    Abstract: An ignition coil includes a coil body, a primary resin molded body, and a secondary resin molded body. The coil body has a primary coil and a secondary coil. The primary resin molded body has the coil body therein in a fixed relation, and the primary resin molded body has a plurality of exposed side portions that hold the coil body therebetween. The secondary resin molded body is molded to have the coil body and the primary resin molded body embedded therein. The secondary resin molded body is configured to allow the plurality of exposed side portions of the primary resin molded body to be exposed to an exterior of the secondary resin molded body.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 30, 2009
    Applicant: DENSO CORPORATION
    Inventor: Junichi Wada
  • Publication number: 20090020883
    Abstract: A semiconductor device includes a first contact plug arranged above a semiconductor substrate and using aluminum (Al) as a material; a second contact plug arranged on and in contact with the first contact plug and using a refractory metal material; a first dielectric film arranged on a flank side of the first and second contact plugs; a wire arranged above the second contact plug and using copper (Cu) as a material; a second dielectric film arranged on a flank side of the wire; and a barrier film arranged at least between the wire and the first dielectric film and between the wire and the second dielectric film.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 22, 2009
    Inventors: Kayo Nomura, Junichi Wada, Hideto Matsuyama, Masayuki Kitamura
  • Publication number: 20090009275
    Abstract: An ignition coil includes a primary coil (14), a secondary coil (16) disposed on an outer circumferential side of the primary coil and configured to be boosted by mutual induction with the primary coil, an outer periphery core (18) having an opposing surface (183), which is opposed to an outer peripheral surface (160) of the secondary coil, and an insulating member (20) disposed between the outer peripheral surface and the opposing surface. The secondary coil and the outer periphery core are arranged such that a shortest distance between the outer peripheral surface and an outer edge (183a, 183b) of the opposing surface is larger than a shortest distance between the outer peripheral surface and the opposing surface.
    Type: Application
    Filed: July 3, 2008
    Publication date: January 8, 2009
    Applicant: DENSO CORPORATION
    Inventor: Junichi Wada
  • Publication number: 20080261398
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.
    Type: Application
    Filed: January 24, 2008
    Publication date: October 23, 2008
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20080157908
    Abstract: An ignition coil, which includes a primary coil and a secondary coil, has an electrical insulating member. The electrical insulating member includes an insulating material being a base material. The electrical insulating member further includes a reactive agent being an additive added to the insulating material for causing dehydration-decomposition, so as to enhance durability when being applied with high voltage. Alternatively, a reactive agent is coated on a surface of the electrical insulating body for causing dehydration-decomposition, so as to enhance durability when being applied with high voltage.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 3, 2008
    Applicant: DENSO CORPORATION
    Inventors: Junichi WADA, Junji SHIRAI
  • Publication number: 20080122102
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.
    Type: Application
    Filed: January 24, 2008
    Publication date: May 29, 2008
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20080090410
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a first metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, oxidizing at least part of the first metal film with oxidizing species remaining in the insulating film, and forming a second metal film, which includes any of a high melting point metal and a noble metal, on the first metal film, the first metal film and the second metal film sharing different metallic material.
    Type: Application
    Filed: August 30, 2007
    Publication date: April 17, 2008
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20080083990
    Abstract: A semiconductor device including a copper layer, an aluminum containing layer, and a barrier metal layer having a laminated structure of a titanium layer and a titanium oxide layer formed between the copper layer and the aluminum containing layer.
    Type: Application
    Filed: August 23, 2007
    Publication date: April 10, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akitsugu Hatazaki, Jota Fukuhara, Tomio Katata, Junichi Wada
  • Patent number: 7351656
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: April 1, 2008
    Assignee: Kabushiki Kaihsa Toshiba
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20060214305
    Abstract: A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.
    Type: Application
    Filed: January 20, 2006
    Publication date: September 28, 2006
    Inventors: Atsuko Sakata, Junichi Wada, Seiichi Omoto, Masaaki Hatano, Soichi Yamashita, Kazuyuki Higashi, Naofumi Nakamura, Masaki Yamada, Kazuya Kinoshita, Tomio Katata, Masahiko Hasunuma
  • Publication number: 20060097399
    Abstract: A method for generating a pattern includes reading out an interconnect layout and a hole layout, the interconnect layout prescribing interconnect patterns, the hole layout prescribing hole patterns configured to connect to the interconnect patterns; extracting one of the hole patterns to be connected within the same interconnect layer level to one of the interconnect patterns in a pattern processing area; extracting a first processing area including the extracted hole pattern; calculating a first pattern density of the interconnect patterns included in the first processing area; and generating first additional patterns in the first processing area based on the first pattern density.
    Type: Application
    Filed: November 3, 2005
    Publication date: May 11, 2006
    Inventors: Masaaki Hatano, Motoya Okazaki, Junichi Wada, Takeshi Nishioka, Hisashi Kaneko, Takeshi Fujimaki, Kazuyuki Higashi, Kenji Yoshida, Noriaki Matsunaga
  • Patent number: 6980073
    Abstract: An ignition coil comprises a housing, a rod-shaped center core 54 arranged substantially at the center within the housing, a thermal stress relaxing member 52 covering the outer circumferential surface of the center core 54, a cylindrical spool 4 arranged on the outer circumferential side of the thermal relaxing member 52 with a gap 9 in between and a resin insulating material 8a with which the gap 9 is filled and which hardens. The thermal stress relaxing member 52 is wound around the center core 54 and the thickness of the thermal stress relaxing member 52 is set to a thickness so that the thermal stress, which is caused by the thermal deformation of the center core 54 and is applied to the resin insulating material 8a, is reduced and reaches a saturation value thereof.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: December 27, 2005
    Assignee: Denso Corporation
    Inventor: Junichi Wada
  • Patent number: 6946387
    Abstract: A method of manufacturing semiconductor device which comprises the steps of forming an insulating film on an Si substrate provided with a wiring layer, forming a contact hole connected to the wiring layer and a wiring groove in the insulating film, filling the contact hole with an Si film, successively forming an Al film and a Ti film all over the substrate, performing a heat treatment thereby to substitute the Al film for the Ti film, and to allow the Si film to be absorbed by the Ti film, whereby filling the contact hole and wiring groove with the Al film, and removing a Ti/Ti silicide which is consisting of Ti silicide formed through the absorption of the Si film by the Ti film and a superfluous Ti, whereby filling the contact hole with an Al plug and filling the wiring groove with an Al wiring.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 20, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Wada, Atsuko Sakata, Tomio Katata, Takamasa Usui, Masahiko Hasunuma, Hideki Shibata, Hisashi Kaneko, Nobuo Hayasaka, Katsuya Okumura