Patents by Inventor Junpei Momo

Junpei Momo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160047060
    Abstract: Occlusion and release of lithium ion are likely to one-dimensionally occur in the b-axis direction of a crystal in a lithium-containing composite oxide having an olivine structure. Thus, a positive electrode in which the b-axes of lithium-containing composite oxide single crystals are oriented vertically to a surface of a positive electrode current collector is provided. The lithium-containing composite oxide particles are mixed with graphene oxide and then pressure is applied thereto, whereby the rectangular parallelepiped or substantially rectangular parallelepiped particles are likely to slip. In addition, in the case where the rectangular parallelepiped or substantially rectangular parallelepiped particles whose length in the b-axis direction is shorter than those in the a-axis direction and the c-axis direction are used, when pressure is applied in one direction, the b-axes can be oriented in the one direction.
    Type: Application
    Filed: October 27, 2015
    Publication date: February 18, 2016
    Inventors: Takuya MIWA, Nobuhiro INOUE, Kuniharu NOMOTO, Junpei MOMO
  • Publication number: 20160043070
    Abstract: A semiconductor device in which a circuit and a power storage element are efficiently placed is provided. The semiconductor device includes a first transistor, a second transistor, and an electric double-layer capacitor. The first transistor, the second transistor, and the electric double-layer capacitor are provided over one substrate. A band gap of a semiconductor constituting a channel region of the second transistor is wider than a band gap of a semiconductor constituting a channel region of the first transistor. The electric double-layer capacitor includes a solid electrolyte.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 11, 2016
    Inventors: Junpei MOMO, Kazutaka KURIKI, Hiromichi GODO
  • Patent number: 9249524
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 2, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Junpei Momo
  • Patent number: 9252419
    Abstract: Occlusion and release of lithium ion are likely to one-dimensionally occur in the b-axis direction of a crystal in a lithium-containing composite oxide having an olivine structure. Thus, a positive electrode in which the b-axes of lithium-containing composite oxide single crystals are oriented vertically to a surface of a positive electrode current collector is provided. The lithium-containing composite oxide particles are mixed with graphene oxide and then pressure is applied thereto, whereby the rectangular parallelepiped or substantially rectangular parallelepiped particles are likely to slip. In addition, in the case where the rectangular parallelepiped or substantially rectangular parallelepiped particles whose length in the b-axis direction is shorter than those in the a-axis direction and the c-axis direction are used, when pressure is applied in one direction, the b-axes can be oriented in the one direction.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: February 2, 2016
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventors: Takuya Miwa, Nobuhiro Inoue, Kuniharu Nomoto, Junpei Momo
  • Publication number: 20160006017
    Abstract: To provide a fabricating method and a fabricating apparatus for a lithium-ion secondary battery having stable charge characteristics and lifetime characteristics. A positive electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance before a secondary battery is completed. In this manner, the positive electrode can have stability. The use of the positive electrode enables fabrication of a highly reliable secondary battery. Similarly, a negative electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance. The use of the negative electrode enables fabrication of a highly reliable secondary battery.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 7, 2016
    Inventors: Yohei MOMMA, Junpei MOMO, Minoru TAKAHASHI, Takahiro KAWAKAMI
  • Publication number: 20150255839
    Abstract: Disclosed is a power storage unit which can safely operate over a wide temperature range. The power storage unit includes: a power storage device; a heater for heating the power storage device; a temperature sensor for sensing the temperature of the power storage device; and a control circuit configured to inhibit charge of the power storage device when its temperature is lower than a first temperature or higher than a second temperature. The first temperature is exemplified by a temperature which allows the formation of a dendrite over a negative electrode of the power storage device, whereas the second temperature is exemplified by a temperature which causes decomposition of a passivating film formed over a surface of a negative electrode active material.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Minoru TAKAHASHI, Shunpei YAMAZAKI, Masaaki HIROKI, Kei TAKAHASHI, Junpei MOMO
  • Publication number: 20150255828
    Abstract: To provide a lithium-ion secondary battery including a first electrode including a first electrode active substance and a second electrode including a second electrode active substance and a third electrode active substance. The second electrode active substance has higher charge and discharge efficiency than the first electrode active substance. The third electrode active substance has lower charge and discharge efficiency than the second electrode active substance. The product of the capacity of the second electrode active substance and the difference between the charge and discharge efficiency of the second electrode active substance and charge and discharge efficiency of the first electrode active substance is greater than the product of the capacity of the third electrode active substance and the difference between the charge and discharge efficiency of the first electrode active substance and the charge and discharge efficiency of the third electrode active substance.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 10, 2015
    Inventors: Junpei MOMO, Nobuhiro INOUE, Takahiro KAWAKAMI, Yohei MOMMA
  • Patent number: 9118077
    Abstract: An object is to reduce variation in shape of crystals that are to be manufactured. Raw materials are each weighed, solutions containing the respective raw materials are formed in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 25, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Junpei Momo
  • Patent number: 9085813
    Abstract: An object is to recover metallic lithium from metallic lithium on which an unnecessary substance is formed without discarding the metallic lithium on which an unnecessary substance is formed. The present invention relates to a method for recovering metallic lithium in such a manner that metallic lithium on which a substance is formed is reacted with nitrogen to form lithium nitride; the lithium nitride is reacted with carbon dioxide to form lithium carbonate; the lithium carbonate is reacted with hydrochloric acid to form lithium chloride; the lithium chloride and potassium chloride are melted; and electrolysis is applied to the melted lithium chloride and potassium chloride.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 9088056
    Abstract: Disclosed is a power storage unit which can safely operate over a wide temperature range. The power storage unit includes: a power storage device; a heater for heating the power storage device; a temperature sensor for sensing the temperature of the power storage device; and a control circuit configured to inhibit charge of the power storage device when its temperature is lower than a first temperature or higher than a second temperature. The first temperature is exemplified by a temperature which allows the formation of a dendrite over a negative electrode of the power storage device, whereas the second temperature is exemplified by a temperature which causes decomposition of a passivating film formed over a surface of a negative electrode active material.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Minoru Takahashi, Shunpei Yamazaki, Masaaki Hiroki, Kei Takahashi, Junpei Momo
  • Publication number: 20150200419
    Abstract: To provide a carbon-based negative electrode material which can be used with an electrolyte containing PC as a main ingredient, a carbon-based negative electrode material having a graphene layer structure is crystalline and has pores. That is, the crystal structure of the carbon-based negative electrode material is distorted more significantly than that of graphite. Accordingly, the carbon-based negative electrode material has a larger interlayer distance between graphenes than graphite. It has been shown that such a negative electrode material can be used for a secondary battery which contains an electrolyte containing PC as a main ingredient.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Inventors: Nobuhiro INOUE, Junpei MOMO, Hiroatsu TODORIKI, Teppei OGUNI
  • Patent number: 9076839
    Abstract: An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 7, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Junpei Momo, Shunpei Yamazaki
  • Publication number: 20150132648
    Abstract: To inhibit degradation of charge and discharge cycle characteristics of a secondary battery. To suppress generation of defects due to expansion and contraction of an active material in a negative electrode. To inhibit deterioration of an electrode due to changes in its form. An electrode member including a current collector, an active material, and a porous body is used. The porous body is in contact with one surface of the current collector and includes a plurality of spaces. The active material is located in the space in the porous body. The space has a larger size than the active material.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 14, 2015
    Inventors: Nobuhiro INOUE, Ryota TAJIMA, Naoki KURIHARA, Junpei MOMO
  • Patent number: 9011702
    Abstract: One of objects is to reduce the effect caused by the volume expansion of an active material. An embodiment is a method for manufacturing an electrode for a power storage device which includes an active material over one of surfaces of a current collector. The active material is formed by forming a conductive body functioning as the current collector; forming a mixed layer including an amorphous region and a microcrystalline region over one of surfaces of the conductive body; and etching the mixed layer selectively, so that a part of or the whole of the amorphous region is removed and the microcrystalline region is exposed. Thus, the effect caused by the volume expansion of the active material is reduced.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kazutaka Kuriki, Junpei Momo, Rie Matsubara
  • Patent number: 8993156
    Abstract: To provide a carbon-based negative electrode material which can be used with an electrolyte containing PC as a main ingredient, a carbon-based negative electrode material having a graphene layer structure is crystalline and has pores. That is, the crystal structure of the carbon-based negative electrode material is distorted more significantly than that of graphite. Accordingly, the carbon-based negative electrode material has a larger interlayer distance between graphenes than graphite. It has been shown that such a negative electrode material can be used for a secondary battery which contains an electrolyte containing PC as a main ingredient.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Junpei Momo, Hiroatsu Todoriki, Teppei Oguni
  • Publication number: 20150086868
    Abstract: An object of one embodiment of the present invention is to provide a secondary battery in which deterioration of charge-discharge cycle characteristics is suppressed, to suppress generation of defects caused by expansion and contraction of an active material in a negative electrode, or to prevent deterioration caused by deformation of a secondary battery. To prevent deterioration, a material that can be alloyed with lithium and fluidified easily is used for a negative electrode. To hold a negative electrode active material over a surface of a current collector, a covering layer that covers the negative electrode active material is provided. Furthermore, a portion where the current collector and the negative electrode active material are in contact with each other is alloyed. In other words, an alloy that is in contact with both the current collector and the negative electrode active material is provided in the negative electrode.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Nobuhiro INOUE, Ryota TAJIMA, Naoki KURIHARA, Junpei MOMO
  • Publication number: 20140370379
    Abstract: To increase the capacity and energy density of a secondary battery by using a novel material as a material for a negative electrode in order to increase the amount of lithium ions transferred in charge and discharge. In the case where the negative electrode includes a current collector and a negative electrode active material layer, gallium is used as the negative electrode active material, and the negative electrode active material layer contains resin at 2 wt % or more, preferably 10 wt % or more, adhesion between the current collector and the negative electrode active material can be increased. This inhibits separation between the current collector and the negative electrode active material due repeated expansion and contraction, resulting in longer lifetime of the secondary battery.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 18, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Nobuhiro INOUE, Junpei MOMO, Ryota TAJIMA, Naoki KURIHARA
  • Patent number: 8815657
    Abstract: After a single crystal semiconductor layer provided over a base substrate by attaching is irradiated with a laser beam, characteristics thereof are improved by first heat treatment, and after adding an impurity element imparting conductivity to the single crystal semiconductor layer, second heat treatment is performed at lower temperature than that of the first heat treatment.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 26, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Suguru Ozawa, Atsuo Isobe, Takashi Hamada, Junpei Momo, Hiroaki Honda, Takashi Shingu, Tetsuya Kakehata
  • Publication number: 20140230208
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 8772128
    Abstract: A single crystal semiconductor substrate is irradiated with ions that are generated by exciting a hydrogen gas and are accelerated with an ion doping apparatus, thereby forming a damaged region that contains a large amount of hydrogen. After the single crystal semiconductor substrate and a supporting substrate are bonded, the single crystal semiconductor substrate is heated to be separated along the damaged region. While a single crystal semiconductor layer separated from the single crystal semiconductor substrate is heated, this single crystal semiconductor layer is irradiated with a laser beam. The single crystal semiconductor layer undergoes re-single-crystallization by being melted through laser beam irradiation, thereby recovering its crystallinity and planarizing the surface of the single crystal semiconductor layer.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junpei Momo, Fumito Isaka, Eiji Higa, Masaki Koyama, Akihisa Shimomura