Patents by Inventor Junxiong Deng

Junxiong Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110200161
    Abstract: A divide-by-three circuit includes a chain of three dynamic flip-flops and a feedback circuit of combinatorial logic. The divide-by-three circuit receives a clock signal that synchronously clocks each dynamic flip-flop. The feedback circuit supplies a feedback signal onto the first dynamic-flop of the chain. In a first mode, a signal from a slave stage of the first flip-flop and a signal from a slave stage of the second flip-flop are used by the feedback circuit to generate the feedback signal. In a second mode, a signal from a master stage of the first flip-flop and a signal from a master stage of the second flip-flop are used by the feedback circuit to generate the feedback signal. By proper selection of the mode, the frequency range of the overall divider is extended. Combinatorial logic converts thirty-three percent duty cycle signals from the flip-flop chain into fifty percent duty cycle quadrature signals.
    Type: Application
    Filed: July 15, 2010
    Publication date: August 18, 2011
    Applicant: QUALCOMM Incorporated
    Inventors: Aleksandar M. Tasic, Junxiong Deng, Dongjiang Qiao
  • Publication number: 20110128084
    Abstract: An integrated circuit is described. The integrated circuit includes an inductor that has a large empty area in the center of the inductor. The integrated circuit also includes additional circuitry. The additional circuitry is located within the large empty area in the center of the inductor. The additional circuitry may include a capacitor bank, transistors, electrostatic discharge (ESD) protection circuitry and other miscellaneous passive or active circuits.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Applicant: QUALCOMM Incorporated
    Inventors: Jean Jin, Aristotele Hadjichristos, Ockgoo Lee, Hongyan Yan, Guy Klemens, Maulin P. Bhagat, Thomas Myers, Norman L. Frederick, Junxiong Deng, Aleksandar Tasic, Bhushan S. Asuri, Mohammad Farazian
  • Patent number: 7936217
    Abstract: A complementary amplifier includes an NMOS transistor coupled to a PMOS transistor in a stacked configuration. The NMOS transistor and the PMOS transistor receive and amplify an input signal. The NMOS and PMOS transistors operate as a linear complementary amplifier and provide an output signal. The NMOS and PMOS transistors may have separate bias voltages, which may be selected to overlap the low-to-high and high-to-low transitions of the transconductances of these transistors. The width and length dimensions of the NMOS and PMOS transistors may be selected to match the change in input capacitance and the change in transconductance of the NMOS transistor in moderate inversion region with the change in input capacitance and the change in transconductance of the PMOS transistor in moderate inversion region. The complementary amplifier may have an approximately constant total input capacitance and an approximately constant total transconductance over a range of voltages.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: May 3, 2011
    Assignee: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Gurkanwal Singh Sahota, Solti Peng
  • Patent number: 7899426
    Abstract: In a SAW-less receiver involving a passive mixer, novel degenerative impedance elements having substantial impedances are disposed in incoming signal paths between the differential signal output leads of a low-noise amplifier (LNA) and the differential signal input leads of the passive mixer. The passive mixer outputs signals to a transimpedance amplifier and baseband filter (TIA). Providing the novel degenerative impedance elements decreases noise in the overall receiver as output from the TIA, with only minimal degradation of other receiver performance characteristics. In some examples, the passive mixer receives local oscillator signals having duty cycles of substantially less than fifty percent. In some examples, the degenerative impedance elements can have one of several impedances.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 1, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Aleksandar Tasic, Junxiong Deng, Namsoo Kim
  • Publication number: 20110018635
    Abstract: A multi-mode low noise amplifier (LNA) with transformer source degeneration is described. In an exemplary design, the multi-mode LNA includes first, second, and third transistors and first and second inductors. The first transistor has its source coupled to the first inductor, amplifies an input signal, and provides a first amplified signal in a first mode. The second transistor has its source coupled to the second inductor, amplifies the input signal, and provides a second amplified signal in a second mode. The third transistor has its source coupled to the second inductor. The first and third transistors receive the input signal and conduct current through the first and second inductors, respectively, in a third mode. The first transistor observes source degeneration from a transformer formed by the first and second inductors, amplifies the input signal, and provides a third amplified signal in the third mode.
    Type: Application
    Filed: September 23, 2009
    Publication date: January 27, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Aleksandar Tasic, Junxiong Deng, Zhang Jin
  • Publication number: 20110012648
    Abstract: A method for reducing average current consumption in a local oscillator (LO) path is disclosed. An LO signal is received at a master frequency divider and a slave frequency divider. Output from the master frequency divider is mixed with an input signal to produce a first mixed output. Output from the slave frequency divider is mixed with the input signal to produce a second mixed output. The second mixed output is forced to be in phase with the first mixed output.
    Type: Application
    Filed: March 15, 2010
    Publication date: January 20, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Dongjiang Qiao, Bhushan S. Asuri, Junxiong Deng, Frederic Bossu
  • Patent number: 7746169
    Abstract: A differential low noise amplifier (LNA) is operable in a selectable one of two modes. The LNA includes a first transistor, a second transistor, a third transistor and a fourth transistor. In the first mode (PDC mode), the four transistors are configured to operate as a post-distortion cancellation (PDC) LNA. The third and fourth transistors operate as cancel transistors that improve linearity, but reduce LNA gain somewhat. In the second mode (high gain mode), the third and fourth transistors are configured so that amplified versions of the LNA input signal that they output are added to amplified versions of the LNA input signal that are output by the first and second main transistors, resulting in increased gain. Multiplexing circuits are provided within the LNA so that the LNA is configurable into a selectable one of the two modes by controlling a digital mode control signal supplied to the LNA.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: June 29, 2010
    Assignee: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Christian Holenstein, Namsoo Kim
  • Patent number: 7729672
    Abstract: An RF output power amplifier (PA) of a cellular telephone includes first and second Class AB amplifier circuits. If the cellular telephone is to operate in a high power operating mode, then the first amplifier drives the PA output terminal. The power transistor(s) in the first amplifier is/are biased at a first DC current and a first DC voltage so as to optimize efficiency and linearity at high output powers. If the cellular telephone is to operate in a low power operating mode, then the second amplifier drives the output terminal. The power transistor(s) in the second amplifier is/are biased at a second DC current and a second DC voltage so as to optimize efficiency and linearity at low output powers. By sizing the power transistors in the amplifiers appropriately, emitter current densities are maintained substantially equal so that PA power gain is the same in the two operating modes.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 1, 2010
    Assignee: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Prasad Gudem
  • Publication number: 20100029323
    Abstract: A circuit is described. The circuit includes a low noise amplifier (LNA), a passive switching core (PSC), a transimpedance amplifier filter (TIA-filter) and a degenerative-impedance gain-tuning network (Zdeg network) having a first Zdeg network input lead, a second Zdeg network input lead, a first Zdeg network output lead and a second Zdeg network output lead, wherein the first Zdeg network input lead is coupled to a first output lead of the LNA and the second Zdeg network input lead is coupled to a second output lead of the LNA, and wherein the first Zdeg network output lead is coupled to a first signal input lead of the PSC and the second Zdeg network output lead is coupled to a second signal input lead of the PSC. The LNA, the Zdeg network, the PSC, and the TIA-filter together form a receiver. A receiver gain is adjusted by the Zdeg network.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: QUALCOMM Incorporated
    Inventors: Aleksandar Tasic, Christian Holenstein, Junxiong Deng
  • Patent number: 7656229
    Abstract: An electronic device includes an amplifier circuit coupled to a linearizer. The amplifier circuit may receive a first input signal including first and second frequencies and generate a first output signal including a delta frequency signal at a delta frequency, which is the difference between the first frequency and the second frequency. The linearizer includes a signal detector circuit, a current-mirror circuit, a low pass filter, a phase shifter, and a bias circuit. The signal detector circuit may generate a second output signal. The current-mirror circuit may adjust an amplitude of a signal. The low pass filter may eliminate a portion of the second output signal having frequencies greater than the delta frequency. The phase shifter may generate a feedback signal corresponding to the delta frequency signal. An amplitude and/or a phase of the feedback signal is different from an amplitude and/or a phase of the delta frequency signal.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: February 2, 2010
    Assignee: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Li Liu, Prasad S. Gudem
  • Publication number: 20090239592
    Abstract: An exemplary embodiment disclosed comprises a mixer having a plurality of input leads; a first degenerative impedance element coupled to a first input lead of the mixer; a second degenerative impedance element coupled to a second input lead of the mixer; and a local oscillator (LO) system comprising a plurality of duty cycle modes to generate a LO signal for the mixer, the local oscillator system operates in a first duty cycle based on a first gain state of the mixer, and in a second duty cycle based on a second gain state of the mixer.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Junxiong Deng, Aristotele Hadjichristos, Aleksandar Tasic, Frederic Bossu
  • Publication number: 20090195310
    Abstract: A differential low noise amplifier (LNA) is operable in a selectable one of two modes. The LNA includes a first transistor, a second transistor, a third transistor and a fourth transistor. In the first mode (PDC mode), the four transistors are configured to operate as a post-distortion cancellation (PDC) LNA. The third and fourth transistors operate as cancel transistors that improve linearity, but reduce LNA gain somewhat. In the second mode (high gain mode), the third and fourth transistors are configured so that amplified versions of the LNA input signal that they output are added to amplified versions of the LNA input signal that are output by the first and second main transistors, resulting in increased gain. Multiplexing circuits are provided within the LNA so that the LNA is configurable into a selectable one of the two modes by controlling a digital mode control signal supplied to the LNA.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 6, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Christian Holenstein, Junxiong Deng, Namsoo Kim
  • Publication number: 20090189691
    Abstract: An electronic device includes an amplifier circuit coupled to a linearizer. The amplifier circuit may receive a first input signal including first and second frequencies and generate a first output signal including a delta frequency signal at a delta frequency, which is the difference between the first frequency and the second frequency. The linearizer includes a signal detector circuit, a current-mirror circuit, a low pass filter, a phase shifter, and a bias circuit. The signal detector circuit may generate a second output signal. The current-mirror circuit may adjust an amplitude of a signal. The low pass filter may eliminate a portion of the second output signal having frequencies greater than the delta frequency. The phase shifter may generate a feedback signal corresponding to the delta frequency signal. An amplitude and/or a phase of the feedback signal is different from an amplitude and/or a phase of the delta frequency signal.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Junxiong Deng, Li Liu, Prasad S. Gudem
  • Publication number: 20090140812
    Abstract: A complementary amplifier includes an NMOS transistor coupled to a PMOS transistor in a stacked configuration. The NMOS transistor and the PMOS transistor receive and amplify an input signal. The NMOS and PMOS transistors operate as a linear complementary amplifier and provide an output signal. The NMOS and PMOS transistors may have separate bias voltages, which may be selected to overlap the low-to-high and high-to-low transitions of the transconductances of these transistors. The width and length dimensions of the NMOS and PMOS transistors may be selected to match the change in input capacitance and the change in transconductance of the NMOS transistor in moderate inversion region with the change in input capacitance and the change in transconductance of the PMOS transistor in moderate inversion region. The complementary amplifier may have an approximately constant total input capacitance and an approximately constant total transconductance over a range of voltages.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Applicant: QUALCOMM Incorporated
    Inventors: Junxiong Deng, Gurkanwal Singh Sahota, Solti Peng
  • Publication number: 20090111420
    Abstract: In a SAW-less receiver involving a passive mixer, novel degenerative impedance elements having substantial impedances are disposed in incoming signal paths between the differential signal output leads of a low-noise amplifier (LNA) and the differential signal input leads of the passive mixer. The passive mixer outputs signals to a transimpedance amplifier and baseband filter (TIA). Providing the novel degenerative impedance elements decreases noise in the overall receiver as output from the TIA, with only minimal degradation of other receiver performance characteristics. In some examples, the passive mixer receives local oscillator signals having duty cycles of substantially less than fifty percent. In some examples, the degenerative impedance elements can have one of several impedances.
    Type: Application
    Filed: November 7, 2007
    Publication date: April 30, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Aleksandar Tasic, Junxiong Deng, Namsoo Kim
  • Publication number: 20090098831
    Abstract: A transmitter includes a transformer and a transformer tuning circuit. The transformer transforms a differential radio frequency (RF) signal to a single-ended RF signal. The transformer tuning circuit tunes the transformer to permit the transmitter to transmit the single-ended RF signal in a first frequency band (e.g., cellular frequency band) or a second frequency band (e.g., PCS frequency band).
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: Junxiong Deng, Maulin Pareshbhai Bhagat, Gurkanwal Singh Sahota
  • Publication number: 20070222519
    Abstract: An RF output power amplifier (PA) of a cellular telephone includes first and second Class AB amplifier circuits. If the cellular telephone is to operate in a high power operating mode, then the first amplifier drives the PA output terminal. The power transistor(s) in the first amplifier is/are biased at a first DC current and a first DC voltage so as to optimize efficiency and linearity at high output powers. If the cellular telephone is to operate in a low power operating mode, then the second amplifier drives the output terminal. The power transistor(s) in the second amplifier is/are biased at a second DC current and a second DC voltage so as to optimize efficiency and linearity at low output powers. By sizing the power transistors in the amplifiers appropriately, emitter current densities are maintained substantially equal so that PA power gain is the same in the two operating modes.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 27, 2007
    Applicant: QUALCOMM, Incorporated
    Inventors: Junxiong Deng, Prasad Gudem