Patents by Inventor Junzhong Liang

Junzhong Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8439502
    Abstract: Aberration-induced vision symptoms are determined by obtaining at least one wave aberration of an eye, calculating at least one point-spread function from the wave aberration, convolving the point-spread function of eye with at least one specially designed image for night vision diagnosis, and determining at least one aberration-induced vision symptom of the tested eye from the convolved images. The specially designed images are for vision diagnosis of aberration-induced glare, halo, ghost image, and starburst. The invention methods for specifying aberration-induced symptoms allow to find an optimized refractive corrections of defocus and astigmatism and to reduce vision symptoms caused by aberrations in the eye.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: May 14, 2013
    Inventor: Junzhong Liang
  • Publication number: 20130107202
    Abstract: Methods and devices are provided to obtain refractive correction with superior visual acuity (e.g., 20/10) by achieving an astigmatism-free customized refractive correction. The astigmatism-free customized refractive correction involves obtaining an objective and precise measurement of cylindrical power in a resolution between 0.01 D and 0.10 D in an eye using an objective aberrometer, reliably relating the cylindrical axis obtained from the objective aberrometer to that in a phoroptor, determining an optimized focus error of an eye through subjective refraction with a phoroptor, generating a customized refraction by combining the objective measured cylindrical power, the objective measured cylindrical axis, and the subjectively measured focus power, fabricating a custom lens with a tolerance finer than 0.09 D based on the generated customized refraction, and delivering an ophthalmic lens that can provide an astigmatism-free refractive correction for an eye.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 2, 2013
    Inventor: Junzhong Liang
  • Publication number: 20130100410
    Abstract: The present invention provides methods, devices, and systems for automated measured correction of the eyes and provision of sunglasses and eyeglasses for individuals, including individuals with a visual acuity of 20/20 or better.
    Type: Application
    Filed: November 28, 2012
    Publication date: April 25, 2013
    Inventor: Junzhong Liang
  • Patent number: 8419185
    Abstract: Methods and devices are provided to obtain refractive correction with superior visual acuity (e.g., 20/10) by achieving an astigmatism-free customized refractive correction. The astigmatism-free customized refractive correction involves obtaining an objective and precise measurement of cylindrical power in a resolution between 0.01 D and 0.10 D in an eye using an objective aberrometer, reliably relating the cylindrical axis obtained from the objective aberrometer to that in a phoroptor, determining an optimized focus error of an eye through subjective refraction with a phoroptor, generating a customized refraction by combining the objective measured cylindrical power, the objective measured cylindrical axis, and the subjectively measured focus power, fabricating a custom lens with a tolerance finer than 0.09 D based on the generated customized refraction, and delivering an ophthalmic lens that can provide an astigmatism-free refractive correction for an eye.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 16, 2013
    Assignee: Perfect Vision Technology (HK) Ltd.
    Inventor: Junzhong Liang
  • Patent number: 8363783
    Abstract: Embodiments provide method and systems for determining or measuring objective eye alignment in an external-coordinate system so as to define a reference axis. Additional embodiments provide a method and system of aligning an objectively determined reference axis of the eye in a selected relationship to a therapeutic axis of an ophthalmic therapeutic apparatus and/or a diagnostic axis of an ophthalmic diagnostic apparatus. Embodiments provide a method and system for planning an ophthalmic treatment procedure based on objective eye alignment in an external-coordinate system so as to define a reference axis of an eye to be treated. The reference axis may be used to position a therapeutic energy component, for example, an orthovoltage X-ray treatment device, e.g., positioned to provide treatment to tissue on the retina, such as the macula.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 29, 2013
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Matt Herron, Junzhong Liang
  • Publication number: 20110228225
    Abstract: Methods and devices are provided to obtain refractive correction with superior visual acuity (e.g., 20/10) by achieving an astigmatism-free customized refractive correction. The astigmatism-free customized refractive correction involves obtaining an objective and precise measurement of cylindrical power in a resolution between 0.01 D and 0.10 D in an eye using an objective aberrometer, reliably relating the cylindrical axis obtained from the objective aberrometer to that in a phoroptor, determining an optimized focus error of an eye through subjective refraction with a phoroptor, generating a customized refraction by combining the objective measured cylindrical power, the objective measured cylindrical axis, and the subjectively measured focus power, fabricating a custom lens with a tolerance finer than 0.09 D based on the generated customized refraction, and delivering an ophthalmic lens that can provide an astigmatism-free refractive correction for an eye.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 22, 2011
    Inventor: Junzhong Liang
  • Publication number: 20110166558
    Abstract: Optical correction methods, devices, and systems reduce optical aberrations or inhibit refractive surgery induced aberrations. Error source control and adjustment or optimization of ablation profiles or other optical data address high order aberrations. A simulation approach identifies and characterizes system factors that can contribute to, or that can be adjusted to inhibit, optical aberrations. Modeling effects of system components facilitates adjustment of the system parameters.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 7, 2011
    Applicant: AMO Manufacturing USA, LLC
    Inventors: Guangming Dai, Junzhong Liang
  • Patent number: 7926490
    Abstract: Optical correction methods, devices, and systems reduce optical aberrations or inhibit refractive surgery induced aberrations. Error source control and adjustment or optimization of ablation profiles or other optical data address high order aberrations. A simulation approach identifies and characterizes system factors that can contribute to, or that can be adjusted to inhibit, optical aberrations. Modeling effects of system components facilitates adjustment of the system parameters.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: April 19, 2011
    Assignee: AMO Manufacturing USA, LLC.
    Inventors: Guangming Dai, Junzhong Liang
  • Publication number: 20110081001
    Abstract: A method, code and system for planning the treatment a lesion on or adjacent to the retina of an eye of a patient are disclosed. There is first established at least two beam paths along which x-radiation is to be directed at the retinal lesion. Based on the known spectral and intensity characteristics of the beam, a total treatment time for irradiation along each beam paths is determined. From the coordinates of the optic nerve in the aligned eye position, there is determined the extent and duration of eye movement away from the aligned patient-eye position in a direction that moves the patient's optic nerve toward the irradiation beam that will be allowed during treatment, while still maintaining the radiation dose at the patient optic nerve below a predetermined dose level.
    Type: Application
    Filed: September 21, 2010
    Publication date: April 7, 2011
    Applicant: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Junzhong Liang
  • Publication number: 20110081000
    Abstract: Embodiments provide method and systems for determining alignment of a patient's body part, such as an eye, in an external coordinate system of a treatment or diagnostic device, such as a radiotherapy device, so as to define a reference axis for guiding device operation. Additional embodiments provide image-based methods and systems for aligning, tracking and monitoring motion of a body part and a treatment target in relation to a radiation beam axis. Particular ophthalmic embodiments provide method and systems including an eye-contact guide device and imaging system for aligning and tracking motion of an eye and ocular treatment target in relation to an orthovoltage X-ray beam axis, so as to monitor application of radiation to a lesion, such as a macular lesion of the retina.
    Type: Application
    Filed: September 7, 2010
    Publication date: April 7, 2011
    Applicant: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Matt Herron, Igor Koruga, Junzhong Liang
  • Publication number: 20110029073
    Abstract: Presbyopia in a patient's eye is treated by inducing spherical aberration in the central section of the pupil, while the peripheral section of the pupil is treated in a manner other than the central section of the pupil. For example, the peripheral section of the pupil may remain untreated, or high-order aberration may be controlled, and/or a second area of spherical aberration may be provided with different focus power.
    Type: Application
    Filed: March 31, 2009
    Publication date: February 3, 2011
    Inventor: Junzhong Liang
  • Publication number: 20100274234
    Abstract: Presbyopia in a patient's eye is treated by inducing spherical aberration in the central section of the pupil, while the peripheral section of the pupil is treated in a manner other than the central section of the pupil. For example, the peripheral section of the pupil may remain untreated, or high-order aberration may be controlled, and/or a second area of spherical aberration may be provided with different focus power.
    Type: Application
    Filed: October 28, 2008
    Publication date: October 28, 2010
    Inventor: Junzhong Liang
  • Patent number: 7801271
    Abstract: A method, code and system for planning the treatment a lesion on or adjacent to the retina of an eye of a patient are disclosed. There is first established at least two beam paths along which x-radiation is to be directed at the retinal lesion. Based on the known spectral and intensity characteristics of the beam, a total treatment time for irradiation along each beam paths is determined. From the coordinates of the optic nerve in the aligned eye position, there is determined the extent and duration of eye movement away from the aligned patient-eye position in a direction that moves the patient's optic nerve toward the irradiation beam that will be allowed during treatment, while still maintaining the radiation dose at the patient optic nerve below a predetermined dose level.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 21, 2010
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Junzhong Liang
  • Patent number: 7792249
    Abstract: Embodiments provide method and systems for determining alignment of a patient's body part, such as an eye, in an external coordinate system of a treatment or diagnostic device, such as a radiotherapy device, so as to define a reference axis for guiding device operation. Additional embodiments provide image-based methods and systems for aligning, tracking and monitoring motion of a body part and a treatment target in relation to a radiation beam axis. Particular ophthalmic embodiments provide method and systems including an eye-contact guide device and imaging system for aligning and tracking motion of an eye and ocular treatment target in relation to an orthovoltage X-ray beam axis, so as to monitor application of radiation to a lesion, such as a macular lesion of the retina.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 7, 2010
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Matt Herron, Igor Koruga, Junzhong Liang
  • Publication number: 20090161826
    Abstract: A method, code and system for planning the treatment a lesion on or adjacent to the retina of an eye of a patient are disclosed. There is first established at least two beam paths along which x-radiation is to be directed at the retinal lesion. Based on the known spectral and intensity characteristics of the beam, a total treatment time for irradiation along each beam paths is determined. From the coordinates of the optic nerve in the aligned eye position, there is determined the extent and duration of eye movement away from the aligned patient-eye position in a direction that moves the patient's optic nerve toward the irradiation beam that will be allowed during treatment, while still maintaining the radiation dose at the patient optic nerve below a predetermined dose level.
    Type: Application
    Filed: October 30, 2008
    Publication date: June 25, 2009
    Applicant: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Junzhong Liang
  • Publication number: 20090161827
    Abstract: Embodiments provide method and systems for determining alignment of a patient's body part, such as an eye, in an external coordinate system of a treatment or diagnostic device, such as a radiotherapy device, so as to define a reference axis for guiding device operation. Additional embodiments provide image-based methods and systems for aligning, tracking and monitoring motion of a body part and a treatment target in relation to a radiation beam axis. Particular ophthalmic embodiments provide method and systems including an eye-contact guide device and imaging system for aligning and tracking motion of an eye and ocular treatment target in relation to an orthovoltage X-ray beam axis, so as to monitor application of radiation to a lesion, such as a macular lesion of the retina.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Applicant: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Erik Chell, Steven D. Hansen, Matt Herron, Igor Koruga, Junzhong Liang
  • Publication number: 20090163898
    Abstract: Embodiments provide method and systems for determining or measuring objective eye alignment in an external-coordinate system so as to define a reference axis. Additional embodiments provide a method and system of aligning an objectively determined reference axis of the eye in a selected relationship to a therapeutic axis of an ophthalmic therapeutic apparatus and/or a diagnostic axis of an ophthalmic diagnostic apparatus. Embodiments provide a method and system for planning an ophthalmic treatment procedure based on objective eye alignment in an external-coordinate system so as to define a reference axis of an eye to be treated. The reference axis may be used to position a therapeutic energy component, for example, an orthovoltage X-ray treatment device, e.g., positioned to provide treatment to tissue on the retina, such as the macula.
    Type: Application
    Filed: April 15, 2008
    Publication date: June 25, 2009
    Applicant: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Matt Herron, Junzhong Liang
  • Patent number: 7537344
    Abstract: Relative MTF scores for an eye are determined by obtaining at least one wave aberration of an eye, calculating at least one modulation transfer function from the wave aberration of the tested eye, specifying image quality of the eye using a relative MTF score system derived from the calculated modulation transfer function of the tested eye and a set of modulation transfer functions from a cohort of eyes with normal visual acuity. Methods for comparing image quality of different eyes under equal conditions and at different pupil sizes include comparing MTF of different eyes for best MTF in all pupil sizes and MTF of different eyes for night vision at a large pupil size that is different from eye to eye.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: May 26, 2009
    Assignee: Advanced Vision Engineering, Inc
    Inventor: Junzhong Liang
  • Publication number: 20090002628
    Abstract: A method of and apparatus for improving vision and the resolution of retinal images is described in which a point source produced on the retina of a living eye by a laser beam is reflected from the retina and received at a lenslet array of a Hartmann-Shack wavefront sensor such that each of the lenslets in the lenslet array forms an aerial image of the retinal point source on a CCD camera located adjacent to the lenslet array. The output signal from the CCD camera is acquired by a computer which processes the signal and produces a correction signal which may be used to control a compensating optical or wavefront compensation device such as a deformable mirror. It may also be used to fabricate a contact lens or intraocular lens, or to guide a surgical procedure to correct the aberrations of the eye. Any of these methods could correct aberrations beyond defocus and astigmatism, allowing improved vision and improved imaging of the inside of the eye.
    Type: Application
    Filed: June 24, 2008
    Publication date: January 1, 2009
    Applicant: University of Rochester
    Inventors: David R. Williams, Junzhong Liang
  • Publication number: 20080316429
    Abstract: A method of and apparatus for improving vision and the resolution of retinal images is described in which a point source produced on the retina of a living eye by a laser beam is reflected from the retina and received at a lenslet array of a Hartmann-Shack wavefront sensor such that each of the lenslets in the lenslet array forms an aerial image of the retinal point source on a CCD camera located adjacent to the lenslet array. The output signal from the CCD camera is acquired by a computer which processes the signal and produces a correction signal which may be used to control a compensating optical or wavefront compensation device such as a deformable mirror. It may also be used to fabricate a contact lens or intraocular lens, or to guide a surgical procedure to correct the aberrations of the eye. Any of these methods could correct aberrations beyond defocus and astigmatism, allowing improved vision and improved imaging of the inside of the eye.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 25, 2008
    Applicant: University of Rochester
    Inventors: David R. Williams, Junzhong Liang