Patents by Inventor Jurgen Frosien

Jurgen Frosien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160240345
    Abstract: The present disclosure provides a charged particle source arrangement for a charged particle beam device. The charged particle source arrangement includes: a first vacuum region and a second vacuum region; a charged particle source in the first vacuum region wherein the charged particle source is configured to generate a primary charged particle beam; and a membrane configured to provide a gas barrier between the first vacuum region and the second vacuum region, and wherein the membrane is configured to let at least a portion of the primary charged particle beam pass through the membrane, wherein a first vacuum generation device is connectable to the first vacuum region and a second vacuum generation device is connectable to the second vacuum region.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 18, 2016
    Inventor: Jürgen Frosien
  • Publication number: 20160189916
    Abstract: A scanning charged particle beam apparatus is described. The scanning charged particle beam apparatus includes a charged particle beam source configured for generating a primary charged particle beam; an objective lens configured for forming a probe on a specimen; a scanning deflection assembly configured for scanning the probe over a surface of the specimen; and an aberration correction aperture, wherein the aberration correction aperture includes an aperture body having a transparent aperture portion configured for having the primary charged particle beam pass through the transparent aperture portion; and a membrane portion including a solid material, wherein the membrane portion is provided at the transparent aperture portion and wherein the membrane portion is configured for having the primary charged particle beam pass through the solid material, wherein the membrane portion has a varying thickness.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 30, 2016
    Inventors: Jürgen Frosien, Stefan Lanio, Ady Arie, Roy Shiloh, Roei Remez
  • Publication number: 20160181057
    Abstract: A charged particle beam device is provided which includes a primary beam source device adapted for generating a primary charged particle beam, a mirror corrector device adapted for providing compensation of spherical and/or chromatic aberrations, a first beam separator adapted for transmitting the primary charged particle beam to the mirror corrector device and for separating the primary charged particle beam from a compensating primary charged particle beam reflected by the mirror corrector device, wherein the first beam separator has a magnetic deflector configured to generate at least one dipole magnetic field, an objective lens adapted for focusing the compensating primary charged particle beam onto a specimen, and a second beam separator adapted for transmitting the compensating primary charged particle beam to the specimen and for separating the compensating primary charged particle beam from a secondary charged particle beam originating from the specimen.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventor: Jürgen Frosien
  • Publication number: 20160133435
    Abstract: According to an embodiment, a method of operating a charged particle beam device is provided. The charged particle beam device includes a beam separation unit, a first optical component distanced from the beam separation unit and a second optical component distanced from the beam separation unit and distanced from the first optical component. The method includes generating a primary charged particle beam. The method further includes generating a first electric field and a first magnetic field in the beam separation unit. The method further includes guiding the primary charged particle beam through the beam separation unit in which the first electric field and the first magnetic field are generated, wherein a travel direction of the primary charged particle beam leaving the beam separation unit is aligned with a first target axis under the influence of the first electric field and the first magnetic field.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 12, 2016
    Inventor: Jürgen Frosien
  • Patent number: 9330884
    Abstract: According to an embodiment, a method of operating a charged particle beam device is provided. The charged particle beam device includes a beam separation unit, a first optical component distanced from the beam separation unit and a second optical component distanced from the beam separation unit and distanced from the first optical component. The method includes generating a primary charged particle beam. The method further includes generating a first electric field and a first magnetic field in the beam separation unit. The method further includes guiding the primary charged particle beam through the beam separation unit in which the first electric field and the first magnetic field are generated, wherein a travel direction of the primary charged particle beam leaving the beam separation unit is aligned with a first target axis under the influence of the first electric field and the first magnetic field.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: May 3, 2016
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Jürgen Frosien
  • Patent number: 9305740
    Abstract: A charged particle beam device is described. In one aspect, the charged particle beam device includes a charged particle beam source, and a switchable multi-aperture for generating two or more beam bundles from a charged particle beam which includes: two or more aperture openings, wherein each of the two or more aperture openings is provided for generating a corresponding beam bundle of the two or more beam bundles; a beam blanker arrangement configured for individually blanking the two or more beam bundles; and a stopping aperture for blocking beam bundles. The device further includes a control unit configured to control the individual blanking of the two or more beam bundles for switching of the switchable multi-aperture and an objective lens configured for focusing the two or more beam bundles on a specimen or wafer.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: April 5, 2016
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Jürgen Frosien, Benjamin John Cook
  • Patent number: 9245709
    Abstract: A charged particle beam specimen inspection system is described. The system includes an emitter for emitting at least one charged particle beam, a specimen support table configured for supporting the specimen, an objective lens for focusing the at least one charged particle beam, a charge control electrode provided between the objective lens and the specimen support table, wherein the charge control electrode has at least one aperture opening for the at least one charged particle beam, and a flood gun configured to emit further charged particles for charging of the specimen, wherein the charge control electrode has a flood gun aperture opening at which a conductive membrane is provided which is positioned between the flood gun and the specimen support table.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: January 26, 2016
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Jürgen Frosien
  • Patent number: 9202666
    Abstract: A method of operating a charged particle beam device is provided. The charged particle beam device includes a beam separator that defines an optical axis, and includes a magnetic beam separation portion and an electrostatic beam separation portion. The method includes generating a primary charged particle beam, and applying a voltage to a sample, the voltage being set to a first value to determine a first landing energy of the primary charged particle beam. The method further includes creating an electric current in the magnetic beam separation portion, the current being set to a first value to generate a first magnetic field, and applying a voltage to the electrostatic beam separation portion, the voltage being set to a first value to generate a first electric field.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: December 1, 2015
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbh
    Inventor: Jürgen Frosien
  • Publication number: 20150228452
    Abstract: A secondary charged particle detection system for a charged particle beam device is described. The detection system includes a beam splitter for separating a primary beam and a secondary beam formed upon impact on a specimen; a beam bender for deflecting the secondary beam; a focusing lens for focusing the secondary beam; a detection element for detecting the secondary beam particles, and three deflection elements, wherein at least a first deflector is provided between the beam bender and the focusing lens, at least a second deflector is provided between the focusing lens and the detection element, at least a third deflector is provided between the beam splitter and the detection element.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 13, 2015
    Inventors: Stefan LANIO, Jürgen FROSIEN, Gerald SCHÖNECKER, Dieter WINKLER
  • Publication number: 20150155134
    Abstract: A scanning charged particle beam device configured to image a specimen is described. The scanning charged particle beam device includes a source of charged particles, a condenser lens for influencing the charged particles, an aperture plate having at least two aperture openings to generate at least two primary beamlets of charged particles, at least two deflectors, wherein the at least two deflectors are multi-pole deflectors, a multi-pole deflector with an order of poles of 8 or higher, an objective lens, wherein the objective lens is a retarding field compound lens, a beam separator configured to separate the at least two primary beamlets from at least two signal beamlets, a beam bender, or a deflector or a mirror configured to deflect the at least two signal beamlets, wherein the beam bender is a hemispherical beam bender or beam bender having at least two curved electrodes, and at least two detector elements.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 4, 2015
    Applicant: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik GmbH
    Inventors: Jürgen FROSIEN, Dieter WINKLER, Benjamin John COOK
  • Patent number: 9035249
    Abstract: A scanning charged particle beam device configured to image a specimen is described. The scanning charged particle beam device includes a source of charged particles, a condenser lens for influencing the charged particles, an aperture plate having at least two aperture openings to generate at least two primary beamlets of charged particles, at least two deflectors, wherein the at least two deflectors are multi-pole deflectors, a multi-pole deflector with an order of poles of 8 or higher, an objective lens, wherein the objective lens is a retarding field compound lens, a beam separator configured to separate the at least two primary beamlets from at least two signal beamlets, a beam bender, or a deflector or a mirror configured to deflect the at least two signal beamlets, wherein the beam bender is a hemispherical beam bender or beam bender having at least two curved electrodes, and at least two detector elements.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: May 19, 2015
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Jürgen Frosien, Dieter Winkler, Benjamin John Cook
  • Patent number: 8921804
    Abstract: A condenser lens arrangement for an electron beam system is described. The condenser lens arrangement includes a magnetic condenser lens adapted for generating a magnetic condenser lens field, the condenser lens having a symmetry axis, and a magnetic deflector adapted for generating a magnetic deflector field. The deflector is configured so that the superposition of the magnetic condenser lens field and the magnetic deflector field results in an optical axis of the condenser lens arrangement being movable relative to the symmetry axis. Further, an electron beam optical system including a condenser lens arrangement and a method for moving a condenser lens are described.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 30, 2014
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik GmbH
    Inventor: Jürgen Frosien
  • Publication number: 20140367586
    Abstract: A charged particle beam device is described. In one aspect, the charged particle beam device includes a charged particle beam source, and a switchable multi-aperture for generating two or more beam bundles from a charged particle beam which includes: two or more aperture openings, wherein each of the two or more aperture openings is provided for generating a corresponding beam bundle of the two or more beam bundles; a beam blanker arrangement configured for individually blanking the two or more beam bundles; and a stopping aperture for blocking beam bundles. The device further includes a control unit configured to control the individual blanking of the two or more beam bundles for switching of the switchable multi-aperture and an objective lens configured for focusing the two or more beam bundles on a specimen or wafer.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Applicant: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Jürgen FROSIEN, Benjamin John COOK
  • Patent number: 8866102
    Abstract: An electron beam device 100 includes: a beam emitter 102 for emitting a primary electron beam 101; an objective electron lens 127 for focusing the primary electron beam 101 onto a specimen 130, the objective lens defining an optical axis 126; a beam tilting arrangement 103 configured to direct the primary electron beam 101 to the electron lens 127 at an adjustable offset from the optical axis 126 such that the objective electron lens 127 directs the electron beam 101 to strike the specimen 130 at an adjustable oblique beam landing angle, whereby a chromatic aberration is caused; a beam separator 115 having a first dispersion for separating a signal electron beam 135 from the primary electron beam 101; and a dispersion compensation element 104 adapted to adjust a compensation dispersion of the primary electron beam 101 so as to compensate for a beam aberration resulting from the first dispersion and from the chromatic aberration.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 21, 2014
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Jürgen Frosien
  • Patent number: 8785879
    Abstract: An electron beam wafer imaging system is described. The system includes an emitter for emitting an electron beam; a power supply for applying a voltage between the emitter and the column housing of at least 20 kV; an objective lens for focusing the electron beam on a wafer, wherein the magnetic lens component and the electrostatic lens component substantially overlap each other, wherein the electrostatic lens component has a first electrode, a second electrode and a third electrode; and a control electrode positioned along an optical axis from the position of the third electrode to the position of a specimen stage, wherein the control electrode is configured for control of signal electrons; a controller to switch between a first operational mode and a second operational mode, wherein the controller is connected to a further power supply for switching between the first operational mode and the second operational mode.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: July 22, 2014
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Jürgen Frosien
  • Publication number: 20130327951
    Abstract: A condenser lens arrangement for an electron beam system is described. The condenser lens arrangement includes a magnetic condenser lens adapted for generating a magnetic condenser lens field, the condenser lens having a symmetry axis, and a magnetic deflector adapted for generating a magnetic deflector field. The deflector is configured so that the superposition of the magnetic condenser lens field and the magnetic deflector field results in an optical axis of the condenser lens arrangement being movable relative to the symmetry axis. Further, an electron beam optical system including a condenser lens arrangement and a method for moving a condenser lens are described.
    Type: Application
    Filed: September 17, 2012
    Publication date: December 12, 2013
    Applicant: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik GmbH
    Inventor: Jürgen FROSIEN
  • Patent number: 8378299
    Abstract: A column for a charged particle beam device is described. The column includes a charged particle emitter for emitting a primary charged particle beam as one source of the primary charged particle beam; a biprism adapted for acting on the primary charged particle beam so that two virtual sources are generated; and a charged particle beam optics adapted to focus the charged particle beam simultaneously on two positions of a specimen corresponding to images of the two virtual sources.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 19, 2013
    Assignee: ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik MBH
    Inventor: Jürgen Frosien
  • Publication number: 20120091359
    Abstract: An emitter assembly for emitting a charged particle beam along an optical axis is described. The emitter assembly being housed in a gun chamber and includes an emitter having an emitter tip, wherein the emitter tip is positioned at a first plane perpendicular to the optical axis and wherein the emitter is configured to be biased to a first potential, an extractor having an opening, wherein the opening is positioned at a second plane perpendicular to the optical axis and wherein the extractor is configured to be biased to a second potential, wherein the second plane has a first distance from the first plane of 2.25 mm and above.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 19, 2012
    Applicant: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Stefan LANIO, Jürgen FROSIEN
  • Publication number: 20120006997
    Abstract: An electron beam device 100 includes: a beam emitter 102 for emitting a primary electron beam 101; an objective electron lens 127 for focusing the primary electron beam 101 onto a specimen 130, the objective lens defining an optical axis 126; a beam tilting arrangement 103 configured to direct the primary electron beam 101 to the electron lens 127 at an adjustable offset from the optical axis 126 such that the objective electron lens 127 directs the electron beam 101 to strike the specimen 130 at an adjustable oblique beam landing angle, whereby a chromatic aberration is caused; a beam separator 115 having a first dispersion for separating a signal electron beam 135 from the primary electron beam 101; and a dispersion compensation element 104 adapted to adjust a compensation dispersion of the primary electron beam 101 so as to compensate for a beam aberration resulting from the first dispersion and from the chromatic aberration.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 12, 2012
    Applicant: ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik GmbH
    Inventor: Jürgen Frosien
  • Publication number: 20110220795
    Abstract: A column for a charged particle beam device is described. The column includes a charged particle emitter for emitting a primary charged particle beam as one source of the primary charged particle beam; a biprism adapted for acting on the primary charged particle beam so that two virtual sources are generated; and a charged particle beam optics adapted to focus the charged particle beam simultaneously on two positions of a specimen corresponding to images of the two virtual sources.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: ICT INTEGRATED CIRCUIT TESTING GESELLSCHAFT FUR HALBLEITERPRUFTECHNIK MBH
    Inventor: Jürgen FROSIEN