Patents by Inventor Justin K. Brask

Justin K. Brask has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9741809
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: August 22, 2017
    Assignee: Intel Corporation
    Inventors: Uday Shah, Brian S. Doyle, Justin K. Brask, Robert S. Chau, Thomas A. Letson
  • Patent number: 9691856
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Amlan Majumdar, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20170170318
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9614083
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 4, 2017
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9548363
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 17, 2017
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20160308014
    Abstract: A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Marko Radosavljevic, Amlan Majumdar, Suman Datta, Jack T. Kavalieros, Brian S. Doyle, Justin K. Brask, Robert S. Chau
  • Publication number: 20160293765
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Publication number: 20160284847
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20160197159
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Application
    Filed: March 10, 2016
    Publication date: July 7, 2016
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20160197185
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Patent number: 9385180
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 5, 2016
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Patent number: 9368583
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: June 14, 2016
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9337307
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 10, 2016
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20160111423
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar AmIan, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 9287380
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 15, 2016
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20160005829
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Uday Shah, Brian S. Doyle, Justin K. Brask, Robert S. Chau, Thomas A. Letson
  • Patent number: 9190518
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 17, 2015
    Assignee: Intel Corporation
    Inventors: Uday Shah, Brian S. Doyle, Justin K. Brask, Robert S. Chau, Thomas A. Letson
  • Publication number: 20150236100
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 9048314
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: June 2, 2015
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20150102429
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau